Photo: Milkyway Mandelholz by O. Henze via Flickr, CC BY-ND 2.0

With and the state of the state

a to be manifester as to a date of the distribution of the

Why are we here?

September 7, 2016

V.Hejny, EDM at storage rings, HPSS 2016

Why are we here?

Measurement of Electric Dipole Moments at Storage Rings

Volker Hejny Forschungszentrum Jülich

HPSS2016, September 5 - 9, 2016, Jülich

Outline

- Electric Dipole Moments
 - What are those?
 - How can they help?
- EDM measurements using storage rings
 - Basic principles
 - Options
- R&D and first measurements at COSY

Further information: http://collaborations.fz-juelich.de/ikp/jedi

Electric Dipole Moments (EDM)

Classical definition:
$$\vec{d} = \sum q_i \vec{r_i}$$

charge x distance

Example: water molecule

- \vec{d} electric dipole moment
- $\vec{\mu}$ magnetic moment

Transformations w.r.t. \mathcal{P} , \mathcal{T}

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{P}: \quad H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{T}: \quad H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

mholtz-Gemeinschaft

Mitglied der Hel

Mitglied der Helmholtz-Gemeinschaft

So what is the difference?

elementary particle

EDM violates \mathcal{P} , \mathcal{T}

water molecule

How can that help?

Reminder: excess of matter in the universe

	Standard Modell	Observed
$rac{n_B-n_{ar B}}{n_{\gamma}}$	$\approx 10^{-18}$	6×10^{-10}

Sakharov (1967): CP violation needed for baryogenesis

New sources of $C\!\mathcal{P}\,$ violation needed to explain this mismatch

$\mathbf{1}$

EDMs as a probe for $C\mathcal{P}$ violation beyond the SM

Symmetries in the Standard Model

	electro- magnetic	weak	strong
С	\checkmark	×	\checkmark
\mathcal{P}	\checkmark	×	\checkmark
$\mathcal{T}/C\mathcal{P}$	\checkmark	×	(√)

C and \mathcal{P} are maximally violated in weak interactions

```
(Lee, Yang, Wu)
```

CP violation discovered in kaon decays described by CKM-matrix in Standard Model (Cronin,Fitch)

CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \leq 10^{-10}$ (strong CP-problem)

Sources of CP violation

Standard Model				
weak interaction	CKM matrix	unobservably small EDMs		
strong interaction	$ heta_{QCD}$	best limit from neutron EDM (≲ 10 ⁻¹⁰) "strong CP problem"		
beyond Standard Model				
e.g. SUSY	?	accessible by EDM measurements		

Different sources of $C\mathcal{P}$ violation result in a different EDM for different particle types

Disentangling CP violation ...

Current EDM limits

Here: EDMs of charged particles

How to measure EDMs?

Common strategy for all EDM measurements:

 \rightarrow measure interaction of \vec{d} with electric field \vec{E}

How to measure EDMs of charged particles?

Electric field accelerates particles

 \rightarrow use a storage ring

Ideal case:

"Ad-hoc" boundary conditions

Very slow spin precession	Long measurement times ($t \approx 1000$ s) High electric fields ($E \approx 10$ MV/m) High degree of polarization ($P \approx 0.8$) Precise polarisation measurement (analysing power $A \approx 0.6$, acc. $f \approx 0.005$)
Particle ensemble ($N \approx 4 \times 10^{10}$ per fill)	All particles must act identically All spins need to be aligned ("spin coherence time")
Horizontal polarisation momentum	Control spin motion at high precision
Magnetic moment causes fake rotations	High field quality Magnetic shielding Precise geometrical alignment Fringe fields under control

 $\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \implies \sigma_{\text{stat}}(1 \text{ year}) \approx 10^{-29} e \text{cm}$

Major challenge: get systematic uncertainties to the same level!

Spin motion

Thomas-BMT equation:

magnetic moment

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} - \frac{\gamma G}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} \left(\vec{E} - \frac{\gamma}{(\gamma + 1)} \vec{\beta} (\vec{\beta} \cdot \vec{B}) + c\vec{\beta} \times \vec{B} \right) \right\} \times \vec{S}$$

EDM

- Ω : angular precession frequency
- G: anomalous magnetic moment

- d: electric dipole moment
- γ : Lorentz factor

Storage rings: \vec{B} vertical, \vec{E} radial

Storage rings: general case

V.Hejny, EDM at storage rings, HPSS 2016

Storage rings: electric ring

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$
$$\equiv 0!$$

"frozen spin" : precession vanishes at magic momentum

$$G = \frac{1}{\gamma^2 - 1} \Longrightarrow p = \frac{m}{\sqrt{G}}$$

only possible for G > 0

Dedicated ring for protons

Storage rings: combined ring

"frozen spin": proper combination of \vec{B} , \vec{E} and γ also for G < 0 (i.e. deuterons, ³He)

All-in-one ring for protons, deuterons, ³He

Storage rings: magnetic ring

COSY: pure magnetic ring, polarized protons and deuterons access to EDM via motional electric field $\vec{\beta} \times \vec{B}$

Ideal starting place for R&D and a proof-of-principle experiment

Pure magnetic ring

Due to fast precession longitudinal polarization component is 50% of time parallel 50% of time anti-parallel

to momentum

 $\vec{E}^* = \vec{v} \times \vec{B}$ \vec{s} \vec{p} $50\% \quad \vec{s}_d = \odot$ \vec{s} \vec{s}

$$\frac{d\vec{S}}{dt} \propto \left(G\vec{B} + d\frac{m_0c}{q\hbar S}\vec{\beta} \times \vec{B} \right) \times \vec{S}$$

E* field in the particle rest frame tilts spin due to EDM 50% of time up and 50% of time down → no net EDM effect

Resonant rf Wien filter

Wien filter: Lorentz force vanishes \rightarrow no effect on EDM rotation Effect on horizontal precession:

R&D at COSY

Thomas-BMT equation:

(Some) Questions to be addressed

- Precise measurement of the precession frequency (spin tune)
 → also time dependent within one cycle
- Maximizing the spin coherence time (goal: ≈1000 s)
- Maintaining the spin direction
 - \rightarrow keep precession frequency stable
 - \rightarrow match frequency and phase to Wien filter radio frequency
- Study effects of field misalignments, orbit distortions, etc.

Cooler Synchrotron COSY

COSY provides cooled & polarized protons and deuterons with p = 0.3 - 3.7 GeV/c

Experimental setup

1. inject and accelerate vertically polarized rf solenoid deuterons to p = 1 GeV/c**EDDA** polarimeter 2. bunch and (pre-)cool 3. turn spin by means of a precession RF solenoid into horizontal plane 4. extract beam slowly (within 100-1000 s) onto a carbon target, measure asymmetry and precisely determine spin precession

spin tune:

 $|\nu_s| = |\gamma G| = \frac{\text{spin precessions}}{\text{particle turn}} = \frac{f_{\text{prec}}}{f_{\text{rev}}} \approx \frac{120 \text{ kHz}}{750 \text{ kHz}} \approx 0.16$

Polarimetry

1 GeV/c

- up/down asymmetry
- left/right asymmetry

270MeV

200MeV

70Me

200Me

9°-13

9°-13°

≈

projection on x-axis projection on y-axis

 \checkmark

0.

0.6

0.4

0.2

d<mark>a</mark> [mb/sr] d<u>Ω</u>

10-

 $\propto P_x$

 $\propto P_v$

Asymmetry measurement

Detector signal

$N^{up,down} = 1 \pm PA \sin(2\pi \cdot f_{\text{prec}}t)$ = $1 \pm PA \sin(2\pi \cdot v_s n_{\text{turns}})$

P: polarisation, A: analysing power

Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA\sin(2\pi \cdot \upsilon_s n_{\text{turns}})$$

Challenges

- precession frequency $f_{\text{prec}} \approx 120 \text{ kHz}$
- $v_s \approx -0.16 \rightarrow 6 \text{ turns / precession}$
- event rate \approx 5000 s⁻¹ \rightarrow 1 hit / 25 precessions
 - \rightarrow no direct fit of the rates

Asymmetry measurement

Spin Coherence Time (SCT)

no

revolution frequency

Ensemble of $\approx 10^9$ deuterons: coherent precession needed!

Ideal case:

- all particles have exactly the same momentum
- all particles travel the same path (orbit) in the ring no
- all particles see the same fields

Example:

$$\frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta v}{v}$$
$$\Delta v \approx 10^{-4} \cdot 0.16 \approx 10^{-5}$$
$$\Delta \varphi = 2\pi \cdot 10^{-5} \cdot 10^6 \text{s}^{-1} \approx 60 \text{ rad/s}$$

Spin Coherence Time (SCT)

- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \implies$ decoherence in < 1s
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in 1st order $\rightarrow \tau \approx 20$ s
- correcting higher order effects using sextupoles

and (pre-) cooling $\rightarrow \tau \approx 1000 \text{ s}$

Precise determination of spin tune

Monitoring phase of asymmetry (v_s fixed):

- spin tune v_s can be determined to $\sigma_{v_s} \approx 10^{-8}$ in $\Delta t \approx 2s$
- average $\overline{v_s}$ in 1 cycle (≈ 100 s) determined to $\sigma_{v_s} \approx 10^{-10}$
- tool for: study long term stability of the ring dedicated online feedback systems probing ring/field imperfections

see: Phys.Rev.Lett. 115, 094801 (2015)

nholtz-Gemeinschaft

Mitglied

Challenges:

- maintain resonance frequency and phase between spin precession and Wien filter
- maintain frozen spin condition in a future dedicated ring

Test at COSY:

• control spin tune via COSY rf:

$$\frac{\Delta \nu_s}{\nu_s} = \frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} = \frac{\beta^2}{\eta} \frac{\Delta f}{f}$$

- control phase to external frequency
- by accelerating/decelerating spin precession

Beam Dynamics meets Diagnostics, Florence

Spin tune: probing field imperfections

Beam Dynamics meets Diagnostics, Florence

Beam Dynamics meets Diagnostics, Florence

Outlook: Polarimeter development

Status:

- EDDA is in operation since about 20 years
- acceptance limits polarimeter efficiency

crucial for feedback system

Outlook: Polarimeter development

- "database" measurements: pC, dC analyzing powers at various beam momenta using the WASA-at-COSY forward detector
- development of a dedicated polarimeter for high precision
 EDM measurements
 - EDM measurements

Summary

- EDMs sensitive to new sources of CP violation
- Mechanism for CP violation: EDMs of charged hadrons needed
- Observable: spin precession in electric fields in storage rings
- COSY: ideal starting point for R&D and a pre-cursor experiment

Outlook

- pre-cursor experiment at COSY: proof of principle with lower sensitivity
- dedicated storage ring:
 - different option are currently under investigation goal: conceptual design report

Jülich Electric Dipole Moment Investigations:

• ≈ 100 members:

Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakau, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...

http://collaborations.fz-juelich.de/ikp/jedi

see