

Towards axion searches with polarized hadron beams and targets at the GSI/FAIR storage rings

Daoning Gu

1. III. Physikalisches Institut B, RWTH Aachen University, Aachen, Germany, 2. Forschungszentrum Jülich, Jülich, Germany,

3. GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.

Motivation

Spin Motion in Storage Ring

- polarized hadron beams can be used to explore interactions that are not observable with unpolarized beams.
- A axions are leading particle candidates for dark matter.
- ALPs don't solve the strong QCD problem.
- in storage rings with polarized beams:

first proof-of-principle experiment was performed with a polarized deuteron beam at COSY, Forschungszentrum Jülich.

Experimental Method

ЬO

 $\frac{d\vec{s}}{dt} = (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM} + \vec{\Omega}_{wind}) \times \vec{s}$ $\vec{\Omega}_{MDM} = -\frac{q}{m'} \qquad \vec{\Omega}_{EDM} = -\frac{1}{sh} dc \vec{\beta} \times \vec{B}.$ $d = d_{DC} + d_{AC} \cos(\omega_a t + \varphi_o)$ **oEDM** induced by axion field \mathbf{I} ***** spin tune: $v_s = G\gamma$. At injection After some time ***** spin tune spread: $\Delta v_s = G\Delta \gamma = G\gamma\beta^2 \frac{\Delta p}{p} + \dots$ ***** spin coherence time (SCT): SCT = time after total polarization drops to 1/e. G: the gyromagnetic anomaly. **Simulation**

- store polarized hadrons.
- maintain precession in horizontal plane (long SCT).
- ✤ if $m_a c^2 \equiv \hbar \omega_a = \Omega_{MDM} \hbar$, polarization will turn out of the horizontal plane, resulting in a vertical polarization component.
- vertical polarization can be measured using a carbon target and a polarimeter.
- * axion wind effect enhanced in storage rings when $v \approx c$.
- \$\lambda_{MDM} = \gamma G \Omega_{rev}\$, a wide mass range can be covered by:
 1) varying the three parameters \gamma, G and \Omega_{rev}\$,
 2) use additional electric field.

- spin tracking using the BMAD software library.
- betatron tune:

✤ CRYRING@ESR.

 $Q_x = Q_y = 2.42$

- Two ways to optimize the SCT.
- 1. sextupole corrections:

 $\frac{1}{SCT} \propto \Delta v_s = |A + a_i I_i| \cdot (\Delta x^2) + |B + b_i I_i| \cdot (\Delta y^2) + |C + c_i I_i| \cdot \left(\frac{\Delta p}{p}\right)^2$

12-

Minimum Δv_s can be obtained by flattening the parabolas. \rightarrow at least 3 groups of sextupole are needed, and corrections

$$\vec{\Omega}_{MDM} = -\frac{q}{m} \left[G\vec{B} - \left(G - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

References

- Stoehlker, T., et al. "Towards experiments with polarized beams and targets at the GSI/FAIR storage rings." 19th Workshop on Polarized Sources, Targets and Polarimetry (PSTP2022). 2023.
- 2. Chang, Seung Pyo, et al. "Axionlike dark matter search using the storage ring EDM method." Physical Review D 99.8 (2019): 083002.
- 3. Karanth, Swathi, et al. "First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam." Physical Review X 13 (2023): 031004.

- are dependent on energy.
- 2. zero crossing shift induced by betatron tunes. Intrinsic spin resonances: $\gamma G = kP \pm Q_y$.
- \rightarrow unknown betatron tunes.

