Measurement of Electric Dipole Moments of Charged Particles at Storage Rings
- Research and Development at COSY -

Volker Hejny
Forschungszentrum Jülich

on behalf of the JEDI Collaboration

DPG Spring Meeting, March 23-27, 2015, Heidelberg
R&D at COSY

- maximizing spin coherence time
- precise spin tune determination
 (monitoring, study of imperfections, feedback systems, ..)
- rf-Wien filter
- development of high precision beam position monitors
 (e.g. SQUID based, final goal ≈ nm per cycle)
- electrostatic deflectors (goal: field strength > 10 MV/m)
- polarimeter development
- spin tracking in storage rings
 ...

see also: http://collaborations.fz-juelich.de/ikp/jedi
How to measure EDMs?

Common strategy for all EDM measurements:

→ measure interaction of \vec{d} with electric field \vec{E}

For charged particles:

→ apply electric field in a storage ring

Ideal case:

$\frac{d\hat{S}}{dt} \propto d\vec{E} \times \hat{S}$

Build-up of vertical polarisation

$s_\perp \propto |d|$
General case: spin motion

Thomas-BMT equation:

\[
\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0 c}{q\hbar S} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right\} \times \vec{S}
\]

MDM

- \(\vec{\Omega} \): angular precession frequency
- \(G \): anomalous magnetic moment
- \(\vec{\beta} \): Lorentz factor

EDM

- \(d \): electric dipole moment
- \(m_0 \): rest mass
- \(c \): speed of light
- \(\hbar \): reduced Planck constant

In general:

- **magnetic moment** causes fast spin precession
- **“frozen spin”**: chose \(\gamma, \vec{B}, \vec{E} \) such that \(\Omega_{MDM} = 0 \)
COSY: pure magnetic ring

Thomas-BMT equation:

\[
\frac{d\hat{S}}{dt} = \vec{\Omega} \times \hat{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{d m_0 c}{q \hbar S} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right\} \times \hat{S}
\]

- polarized protons and deuterons up to 3.7 GeV/c available
- access to EDM via motional electric field \(\vec{\beta} \times \vec{B} \)
- requires additional means (e.g. rf \(E \) and \(B \) fields) to compensate \(G\vec{B} \) contribution

Ideal starting place for R&D and a proof-of-principle experiment
R&D at COSY

Thomas-BMT equation:

\[
\frac{d\hat{S}}{dt} = \vec{\Omega} \times \hat{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0 c}{q \hbar S} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right\} \times \hat{S}
\]

study spin tune \(\nu_S = \frac{|\vec{\Omega}|}{|\vec{\omega}_{\text{cycl}}|} = \gamma G \)

\(\rightarrow 2\pi \nu_S \): phase advance per turn

R&D with deuterons

\(p = 1 \text{ GeV/c} \)
\(G = -0.14256177(72) \)
\(\nu_S \approx -0.161 \rightarrow f_S \approx 120 \text{ kHz} \)
Experimental setup

1. inject and accelerate vertically polarized deuterons to $p = 1 \text{ GeV/c}$
Experimental setup

1. inject and accelerate vertically polarized deuterons to $p = 1 \text{ GeV}/c$
2. turn spin with help of a RF solenoid into horizontal plane
Experimental setup

1. inject and accelerate vertically polarized deuterons to $p = 1 \text{ GeV}/c$
2. turn spin with help of a RF solenoid into horizontal plane
3. extract beam slowly (within 100 s) onto a carbon target measure asymmetry and determine spin precession
Asymmetry measurement

Detector signal

\[N_{up,down} \propto 1 \pm PA \sin(2\pi \cdot f_s t) = 1 \pm PA \sin(2\pi \cdot \nu_s \cdot n_{\text{turns}}) \]

P: polarisation, A: analysing power

Asymmetry

\[\varepsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = PA \sin(2\pi \cdot \nu_s \cdot n_{\text{turns}}) \]

Challenges

• precession frequency \(f_s \approx 120 \text{ kHz} \)
• \(\nu_s \approx -0.161 \rightarrow 6 \text{ turns / precession} \)
• event rate \(\approx 5000 \text{ s}^{-1} \rightarrow 1 \text{ hit / 25 precessions} \)
 \[\rightarrow \text{no direct fit of the rates} \]
Asymmetry measurement

COSY rf → beam revolutions: counting turn number \(n \)
detector events → assign turn number \(n \) → phase advance \(\varphi_s = 2\pi \nu_s n \)

for intervals of \(\Delta n = 10^6 \) turns: \(\varphi_s \rightarrow \varphi_s \mod 2\pi \)

scan \(\nu_s \) in some interval around \(\nu_s = \gamma G \)

true \(\nu_s \) a priori not known

\[\sigma_{\nu_s} \lesssim 10^{-6} \]

maximum asymmetry

\(\nu_{s,\text{max}} \)
Improvement of σ_{ν_s}

Monitoring phase of asymmetry (ν_s fixed):

\begin{align*}
\nu_s &= \nu_{s,\text{true}} \\
\nu_s &= \nu_{s,\text{true}} + \delta\nu_s
\end{align*}

first derivative gives deviation from assumed spin tune ν_s

Preliminary
Results: spin tune ν_s

- spin tune ν_s can be determined to $\sigma_{\nu_s} \approx 10^{-8}$ in $\Delta t \approx 2\text{s}$
- average $\overline{\nu_s}$ in 1 cycle ($\approx 100\text{s}$) determined to $\sigma_{\nu_s} \approx 10^{-10}$
- one application: study long term stability of the ring
- future application: dedicated online feedback systems
Spin tune: probing ring imperfections

- spin tune is perturbed by small kicks $\sim a$ by ring imperfections
 $$\nu_0 = \gamma G + O(a^2)$$
- idea: probe imperfections by adding artificial imperfections
 spin kicks χ_1, χ_2 by means of e-cooler solenoids
- measure spin tune change
 $$\Delta \nu_s = \nu_s(\chi_1, \chi_2) - \nu_0$$
- expectation
 $$\Delta \nu_s \propto (y_\pm - a_\pm)^2$$
 $$y_\pm = \frac{1}{2}(\chi_1 \pm \chi_2)$$
 $$a_\pm: \text{in-plane ring imperfections}$$
Spin tune: probing ring imperfections

$\Delta v_s = 3.01072(66) \cdot 10^{-6}$
Spin tune: probing ring imperfections

spin tune map:

- parabolic behavior confirmed
- saddle point provides information on ring imperfections

Δνₛ(𝑦₋ = const)

𝑦₋ = 9.25 mrad
𝑦₋ = 3.7 mrad

further information: HK 72.2 (Fabian Trinkel), HK 72.4 (Dennis Eversmann)
Spin coherence time (SCT)

Ensemble of \(\approx 10^9 \) deuterons: coherent precession needed!

- unbunched beam: \(\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \Rightarrow \text{decoherence in } < 1 \text{s} \)
- bunching: eliminate effects on \(\frac{\Delta p}{p} \) in 1st order \(\Rightarrow \tau \approx 20 \text{s} \)
- correcting higher order effects using sextupoles \(\Rightarrow \tau \approx 1000 \text{s} \)

<table>
<thead>
<tr>
<th>MXG strength [m^{-3}]</th>
<th>time [s]</th>
<th>degree of polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48 m^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05 m^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33 m^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.52 m^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 24, 2015
V.Hejny, EDM at storage rings, DPG Heidelberg
SCT vs chromaticity

chromaticity: $\Delta Q_{x,y}/\Delta p$

$(Q_{x,y}: \text{betatron tunes}, p: \text{momentum})$

- also controlled by sextupoles (here: MXS, MXG)
- compare:
 - points of zero chromaticity
 - points of longest SCT

settings for zero chromaticity and longest SCT coincide!
Due to horizontal precession caused by magnetic moment:

\[\int d \left[\left(\vec{\beta} \times \vec{B} \right) \times \vec{S} \right] dt = 0 \]

\[\vec{E}^* = \vec{\nu} \times \vec{B} \]

\[\vec{s}^d = \text{50\%} \]

\[\vec{p} \]
rf Wien filter: magnetic ring

\[\vec{\Omega} \propto G \vec{B} + d \frac{m}{q \hbar S} (\vec{v} \times \vec{B}) \]

Due to horizontal precession caused by magnetic moment:

\[\int d \left[(\vec{\beta} \times \vec{B}) \times \vec{S} \right] dt = 0 \]

\[\rightarrow \text{no net EDM effect} \]

\[\vec{E}^* = \vec{v} \times \vec{B} \]

Use resonant “magic Wien-Filter”

\[\vec{E}^* = \vec{E}_W + \vec{v} \times \vec{B}_W = 0 \]

- affects only magnetic moment
- introduces „EDM free“ phase advance in horizontal precession

\[\rightarrow \text{net EDM effect can be observed} \]
rf Wien filter: design

RF B dipole
- ferrite blocks
- coil: 8 windings

RF E dipole
- foil electrodes
- distance 54 mm
- length 580 mm

\[e \hat{E}_y \]
\[\int \hat{F}_y \, dz \Rightarrow 0 \text{ eV/m} \]

\[e c \beta \hat{B}_x \]
rf Wien filter: first tests in beam

Lorentz force compensation

- Amplitude and phase matching of rf E- and B-fields
- move betatron sideband onto RF frequency for max. sensitivity
- exited part of beam is removed (beam loss)
- determination of matching amplitudes and phase down to 10^{-3}
rf Wien filter: frequency scan

- **Run3677** | $f_\text{Py} = 0.2896$ Hz, $\tau = 6.6399$ s
- **Run3684** | $f_\text{Py} = 0.2167$ Hz, $\tau = 4.7532$ s
- **Run3585** | $f_\text{Py} = 0.2011$ Hz, $\tau = 4.6804$ s
- **Run3574** | $f_\text{Py} = 0.2827$ Hz, $\tau = 6.7726$ s

Vertical polarisation (asymmetry)

- **rf on**
- **close to resonance**
- **Damping:** SCT not optimized

Time in cycle
Summary

• **COSY**: ideal starting point for R&D and a pre-cursor experiment
• **spin coherence time** of several hundred seconds reached
• **precise spin tune determination** tool for understand storage ring parameters (future option: phase lock for rf devices)
• new equipment: **rf Wien filter**, BPMs, deflectors, ...

Outlook

• **pre-cursor experiment** at COSY:
 proof of principle with lower sensitivity planned for < 2019
• **dedicated storage ring**:
 different options are currently under investigation
 goal: conceptual design report 2019
Jülich Electric Dipole Moment Investigations:

• ≈ 100 members:
 Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakau, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...

• see
 http://collaborations.fz-juelich.de/ikp/jedi