

ELECTROSTATIC DEFLECTOR DEVELOPMENT for an EDM storage ring

MARCH 18, 2019 I CHRISTIAN KÄSEBERG, master student, on behalf of the JEDI collaboration

Outline

What are EDM?

Why are they interesting? How can they be measured?

Stages of EDM measurements

Cooler Synchrotron COSY Prototype ring Dedicated EDM ring

Development of an $\vec{E} \times \vec{B}$ deflector

Test setup for small electrodes New setup for larger electrodes Simulation of the fields

Conclusion

EDM and CP violation

The universe is dominated by matter.

- There is much more matter than antimatter in the universe.
- Andrei Sakharov, 1967:
 - Baryon number B violation
 - C- and CP-symmetry violation
 - Interactions out of thermal equilibrium
- Time and parity symmetry are both violated by EDM.
- Assuming CPT symmetry holds, CP symmetry is also violated.
- A permanent EDM could explain the baryon/antibaryon asymmetry in the universe.

Electric Dipole Moment

$$\begin{array}{c}
\stackrel{+q}{\leftarrow} & \stackrel{-q}{r} \\
\vec{d} = q\vec{r}
\end{array}$$

- EDM is the separation of positive and negative charge.
- Permanent EDM violates P and T symmetry.
 d || *š*
- The Hamiltonian is:

$$\begin{aligned} \mathcal{H} &= -\vec{\mu}\vec{B} - \vec{d}\vec{E} \\ \mathcal{P}(\mathcal{H}) &= -\vec{\mu}\vec{B} + \vec{d}\vec{E} \\ \mathcal{T}(\mathcal{H}) &= -\vec{\mu}\vec{B} + \vec{d}\vec{E} \end{aligned}$$

A permanent EDM violates P and T symmetry.

EDM in an electric ring

■ The motion of particle spin is described by the Thomas-BMT equation:

$$\begin{aligned} \frac{d\vec{S}}{dt} &= \left(\vec{\Omega}_{\mathsf{MDM}} + \vec{\Omega}_{\mathsf{EDM}}\right) \times \vec{S} \\ &= -\frac{q}{m} \left(\left[\mathbf{G}\vec{B} - \left(\mathbf{G} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \frac{\eta}{2c} \left[\vec{E} + c\vec{\beta} \times \vec{B} \right] \right) \times \vec{S} \end{aligned}$$

- Initially spin polarization is parallel to the velocity.
- One working principle:
 - 'Freeze' MDM
 - EDM will cause a vertical polarization.
 - Conclusions about EDM based on time behaviour.

Cooler Synchrotron COSY in Jülich

- Synchrotron with a circumference of 184 m
- Used for polarized deuterons and protons.
 - At the moment polarized deuterons with p = 970 MeV/c.
- Stochastic cooling and 2 electron coolers installed.
- EDM precursor experiment running.
- Polarimeter used to measure polarization.
- R&D work, precursor experiment, future injector.

Stages of EDM measurement

Stage 1: Cosy (current stage)

- Precursor experiment
- Magnetic ring
- 970 MeV/c

Stage 2: Prototype ring (future plan) Stage 3: EDM ring (far future plan)

- Electromagnetic
- Either CW/CCW use or EDM measurement
- 30 MeV or 45 MeV

- All electric
- 701 MeV/c
- CW/CCW beam and measurement at same time.

 \Rightarrow Gaining more precision and fewer systematic errors with each stage.

Up to now: Small electrodes

- Diameter of 20 mm.
- Vacuum of $p \approx 10^{-10}$ mbar.
- Different surface treatment and coatings:
 - Cleaning
 - Polishing
 - TiN coating
- Different materials:
 - Stainless steel
 - Aluminium
- Testing for different distances.
- \blacksquare Field strengths reach up to 90 $\frac{MV}{m}$ before breakdown.

Stainless steel electrodes.

Results for small electrodes

- Electrode diameter of 20 mm.
- Electrode material aluminium.
- Coated with TiN.

Results for small electrodes contd.

Comparison for different electrodes:

Simulation of larger electrodes

- Simulation done with CST Studio.
- Electrodes have the same shape as new large ones.
- Different parameters can be changed:
 - Distance between electrodes.
 - Electric potentials.
 - Overlaid magnetic field.
- Trajectories of the electrons are calculated.
- Result: Electrons hit and possibly damage other electrode.
- Solved by overlaid magnetic field.

Electron trajectories with and without B-field.

Layout of ExB deflector

Setup to test large electrodes inside a magnetic field.

- Electrodes:
 - Aluminium coated with TiN.
 - Size in mm: $1020 \times 90 \times 30$.
 - Edges are bended with a 18 mm and 10 mm radius at the front and at the back respectively.
- Form shaped in a way to insert whole set-up in magnet to protect electrodes.
- Foil at top and bottom to protect vacuum chamber in case of spark.

The future: Larger electrodes

- Target field of $E = 8 \frac{MV}{m}$.
- Electrode distance between 20 and 120 mm.
- Voltage up to ± 200 kV.
- Currently being assembled.

Conclusion and outlook

The magnet where the set-up will be installed.

Achievements:

- Different electrodes tested.
- Preparations for the new set-up more or less finished.
- Simulation shows first results.
- Future plans:
 - Do further measurements with the small electrodes (new material, coating,...).
 - Finish assembling for the large electrodes.
 - Perform measurements with the large electrodes.
 - Test for the influence of the magnetic field on the behaviour.
 - Simulate the deflector to cross check and get information for further development.

Thank you!

Backup Slides

EDM measurement in a magnetic ring

- In a magnetic ring, the spin motion is: $\dot{\vec{S}} \propto (\vec{\beta} \times \vec{B}) \times \vec{S}$.
- Due to spin rotation, the vertical component is oscillating without a net signal.
- RF Wien filter manipulates the field to produce a net signal.

