BEAM-BASED ALIGNMENT AT COSY
Prerequisite for an EDM measurement

July 1, 2019 | Tim Wagner¹, Andrzej Magiera², on behalf of the JEDI Collaboration
¹IKP-2, Forschungszentrum Jülich, ²Institute of Physics, Jagiellonian University, Kraków
OVERVIEW

- Why is beam-based alignment needed?
- Working principle of beam-based alignment
- Results of the last beam time A15
- Explanation of measurement plan
- Beam time request
WHY IS BEAM-BASED ALIGNMENT NEEDED?

- For an EDM measurement the orbit has to be as good as possible.
- Orbit RMS should be lower than 100 µm → Orbit Control
- Goal is to go central through all magnets (i.e. quadrupoles)
- Thus BPM to quadrupole offset has to be known → Beam-based alignment
HOW DOES BEAM-BASED ALIGNMENT WORK?

- Use beam to optimize the beam position
- Vary quadrupole strength
- Observe orbit change
- Try to minimize the orbit change
HOW DOES BEAM-BASED ALIGNMENT WORK?

- Use beam to optimize the beam position
- Vary quadrupole strength
- Observe orbit change
- Try to minimize the orbit change
HOW DOES BEAM-BASED ALIGNMENT WORK?

- Use beam to optimize the beam position
- Vary quadrupole strength
- Observe orbit change
- Try to minimize the orbit change
HOW DOES BEAM-BASED ALIGNMENT WORK?

- How does the orbit change when varying the quadrupole strength?

\[
\Delta x(s) = \Delta k \cdot x(s_0) \frac{l}{B\rho} \cdot \frac{1}{1 - k^2 \frac{\beta(s_0)}{2B\rho \tan \pi \nu}} \cdot \sqrt{\frac{\beta(s)}{\beta(s_0)}} \sqrt{\frac{\beta(s_0)}{\beta(s_0)}} \cos[\phi(s) - \phi(s_0) - \pi \nu]
\]

- Not possible to calculate \(x(s_0) \) due to lack of precise knowledge of all other parameters

\[
f = \frac{1}{N_{\text{BPM}}} \sum_{i=1}^{N_{\text{BPM}}} (x_i(+\Delta k) - x_i(-\Delta k))^2 \propto (x(s_0))^2
\]

- By finding the minimum (\(f \to 0 \)) the optimal beam position can be found
BEAM-BASED ALIGNMENT MEASUREMENT SO FAR

A15 February beam time, 12 quadrupoles

- 4th until 10th February planned
- 6th until 11th February measured due to issues with COSY dipoles
- Measurement for all 12 quadrupoles could be completed
RESULTS

Examples for the fits

\[
\text{QT1, } \chi^2_{\text{d.o.f.}} = 0.96
\]

\[
\text{QT18, } \chi^2_{\text{d.o.f.}} = 1.77
\]
RESULTS

Optimal position of the beam within the quadrupoles

Offset / mm
Offset of nearest BPM with respect to quadrupole center
Preliminary
Horizontal
Vertical
RESULTING BPM CALIBRATION

<table>
<thead>
<tr>
<th>BPM name</th>
<th>Horizontal correction</th>
<th>Vertical correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPM02 (s = 10.4 m)</td>
<td>(1.705 ± 0.008) mm</td>
<td>(0.416 ± 0.005) mm</td>
</tr>
<tr>
<td>BPM06 (s = 29.5 m)</td>
<td>(1.371 ± 0.007) mm</td>
<td>(3.382 ± 0.011) mm</td>
</tr>
<tr>
<td>BPM18 (s = 100.2 m)</td>
<td>(4.177 ± 0.007) mm</td>
<td>(1.308 ± 0.005) mm</td>
</tr>
<tr>
<td>BPM19 (s = 110.1 m)</td>
<td>(1.868 ± 0.005) mm</td>
<td>(3.273 ± 0.010) mm</td>
</tr>
<tr>
<td>BPM20 (s = 123.3 m)</td>
<td>(2.149 ± 0.007) mm</td>
<td>(0.281 ± 0.007) mm</td>
</tr>
<tr>
<td>BPM21 (s = 133.2 m)</td>
<td>(2.232 ± 0.008) mm</td>
<td>(1.430 ± 0.006) mm</td>
</tr>
</tbody>
</table>

Resulting orbit improvement from \(\text{RMS}_y = 1.21 \text{ mm} \) to \(1.01 \text{ mm} \) with only 20% of the BPMs calibrated.
New power supplies bought
All quadrupoles will be equipped with connectors for the power supplies
“Plug and play” system can be operated by nearly everyone
Faster change of quadrupole during the measurement and also possible at any time
BEAM TIME REQUEST

Time requirement

- Measurement of 12 quadrupoles took 1 week
- Extrapolating for 56 quadrupoles would lead to 4.5 weeks
- Faster switching of quadrupoles should make it possible in 3 weeks
- Add one week MD to have a buffer in case something goes wrong like last time
We would like to request **three weeks** of beam time (plus **one week MD**) to perform the beam-based alignment measurement and calibrate all BPMs in COSY.