Theory Outlook
EDM Searches at Storage Rings

ECT*, Trento, October 5, 2012 | Andreas Wirzba
Outline:

1. Observations and the physics case
2. Theory input
3. What to measure?
4. Reliable quantitative statements
Outline:

1. Observations and the physics case
2. Theory input
3. What to measure?
4. Reliable quantitative statements

Come to the dark side of the force!
Naive estimate of the EDM scale of the nucleon
Khriplovich & Lamoreaux (1997); Kolya Nikolaev’s talk

- CP & P conserving magnetic moment \sim nuclear magneton μ_N
 \[\mu_N = \frac{e}{2m_p} \sim 10^{-14} \text{ e} \cdot \text{cm} \]

- EDM $\neq 0$ requires parity P violation *:
 \Rightarrow pay the price $\sim 10^{-7}$.

- EDM $\neq 0$ requires CP violation †: the price is $\sim 10^{-3}$.

In summary:

\[d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} \text{ e} \cdot \text{cm} \]

In SM (with $\bar{\theta} \equiv 0$): extra P violation to undo flavor change:

\[d_N^{\text{SM}} \sim 10^{-7} \times 10^{-24} \text{ e} \cdot \text{cm} \sim 10^{-31} \text{ e} \cdot \text{cm} \]

More sophisticated calculations: Ramsey-Musolf’s & Uraltsev’s talks

* $G_F \cdot m^2_\pi \sim 10^{-7}$ with $G_F \approx 1.166 \cdot 10^{-5} \text{ GeV}^{-2}$,
$^\dagger |\eta_{+-}| \equiv \frac{|A(K^0_L \rightarrow \pi^+ \pi^-)|}{|A(K^0_S \rightarrow \pi^+ \pi^-)|} = (2.232 \pm 0.011) \cdot 10^{-3}$
The physics case
The N-EDM range for testing or excluding theories beyond $\text{SM}_{\bar{\theta}=0}$:

\[
\therefore \quad 10^{-24} \text{e} \cdot \text{cm} < d_N < 10^{-31} \text{e} \cdot \text{cm}
\]

Using current bound $d_n < 2.9 \cdot 10^{-26} \text{e} \cdot \text{cm}$ & $d_p < 7.9 \cdot 10^{-25} \text{e} \cdot \text{cm}$

\[\rightarrow \text{the actual test range is rather}\]

\[\therefore \quad 10^{-26} \text{e} \cdot \text{cm} < d_N < 10^{-31} \text{e} \cdot \text{cm}\]

Quoting Michael Ramsey-Musolf:

- ‘n-EDM has killed more theories than any other single experiment’
- EDMs provide a powerful probe on EW baryogenesis
- *Next generation of EDM searches* ($\sim 10^{-28} \text{e} \cdot \text{cm}$) *may conclusively test* MSSM EW baryogenesis.

Bill Marciano: $H \rightarrow \gamma\gamma$ beyond SM expectations ($1.5 - 2\sigma$) testable in 2-loop Higgs contributions to fermion EDMs rather than in diboson decays at LHC
Input from many corners of theoretical physics:

(similarly to EDM measurements which use expertise/experts from many areas of experimental research, accelerator physics, non-linear dynamics)

- High energy (beyond-SM) physics, LHC results (Bill Marciano)
- EW Baryogenesis (Michael Ramsey-Musolf)
- Lattice QCD (Gerrit Schierholz and Taku Izubuchi)
- Chiral perturbation theory for nEDM (and pEDM) and relation (chiral & volume extensions) to Lattice QCD (Ulf Meißner)
- Low-energy effective field theory for deuteron, 3He (and 3H) EDMs (Bira van Kolck, Jan Bsaisou, Jordy de Vries)
What to measure (\textit{?})
in the case of quark- and/or gluon-type EDMs?

1. A positive measurement of the permanent EDM of any non-self-conjugating particle with spin (elementary or composed) is sufficient to establish the principle.

2. To disentangle the mechanism, more measurements are needed: d_n, d_p, d_D, ... for quark- and gluon-type EDMs.

3. The most distinctive mechanism is the dimension-four QCD θ-term. Measurements of the proton and neutron (and the deuteron) EDM might be sufficient to extract and test the $\bar{\theta} \leq 10^{-10}$ angle.
Reliable quantitative statements

Note: EDMs measurements are low-energy measurements

Thus, the pertinent theoretical treatment must be of low-energy and non-perturbative nature! We have two candidates:

1. lattice QCD
2. and low-energy effective field theories (extensions of chiral perturbation theory)
 - In the long run lattice QCD will have the highest potential to predict proton and neutron EDMs:
 - at least for the QCD θ-term induced EDMs.
 - But applicability is an open question for
 - dimension-six operators beyond the SM (e.g. qEDM, qCEDM, gCEDM or four-quark EDMs)
 - and even more so for light nuclei (e.g. d, 3He, t, or 7Li)
The role of EFT
EDM-Translator from “quarkish” to “hadronic” language?

[Image of C-3PO and R2-D2 from Star Wars]
The role of EFT
EDM-Translator from “quarkish” to “hadronic” language?

Symmetries, esp. Chiral Symmetry and Goldstone Theorem
Low-Energy Effective Field Theory with External Sources
Outlook:

- EDMs are **ideal probes** for the CP physics beyond the SM.
- EDMs of light nuclei provide **independent information** to p and n.
- EDMs of light nuclei may be larger & **simpler** than nucleon EDMs.
- qEDM dominates if nuclear EDM is sum of nucleon EDMs.
- Nuclear calculation possible up to **accuracy of a few %**.
- Deuteron is a filter for the isospin-dependent qCEDM.
- θEDM: $d_{3\text{He}} - 2d_p - d_n \iff \bar{\theta} \iff \text{p-,n-EDM}$.

\[d_{3\text{He}} - 2d_p - d_n \]
Outlook: May the force be with us!

- EDMs are ideal probes for the \mathcal{CP} physics beyond the SM
- EDMs of light nuclei provide independent information to p and n
- EDMs of light nuclei may be larger & simpler than nucleon EDMs
- qEDM dominates if nuclear EDM is sum of nucleon EDMs
- Nuclear calculation possible up to accuracy of a few %
- Deuteron is a filter for the isospin-dependent qCEDM
- θEDM: $d^{3}_{\text{He}} - 2d_{p} - d_{n} \leftrightarrow \bar{\theta} \leftrightarrow p-,n$-EDM

From the theory point: a measurement of p, n, d, and ^{3}He EDM is necessary to disentangle the underlying physics