Theory Outlook EDM Searches at Storage Rings

ECT*, Trento, October 5, 2012 | Andreas Wirzba

Outline:

- 1 Observations and the physics case
- 2 Theory input
- 3 What to measure?
- 4 Reliable quantitative statements

Outline:

- 1 Observations and the physics case
- 2 Theory input
- 3 What to measure?
- 4 Reliable quantitative statements

Come to the dark side of the force!

Naive estimate of the EDM scale of the nucleon

Khriplovich & Lamoreaux (1997); Kolya Nikolaev's talk

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_{\rm p}} \sim 10^{-14}\,{\rm e\cdot cm}$$

EDM ≠ 0 requires parity P violation *:

 \rightarrow pay the price ~ 10⁻⁷.

- EDM \neq 0 requires CP violation [†]: the price is ~ 10^{-3} .
- In summary: $d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} \, \mathrm{e} \cdot \mathrm{cm}$
- In SM (with $\bar{\theta} \equiv 0$) : extra P violation to undo flavor change:

$$\Rightarrow \ \ \, \left[d_N^{\rm SM} \sim 10^{-7} \times 10^{-24} \, {\rm e} \cdot {\rm cm} \ \sim \ 10^{-31} \, {\rm e} \cdot {\rm cm} \right]$$

The physics case

The *N*-EDM range for testing or excluding theories beyond $SM_{\bar{\theta}=0}$:

$$\therefore 10^{-24} \,\mathrm{e\cdot cm} < d_N < 10^{-31} \,\mathrm{e\cdot cm}$$

Using current bound $d_{\rm n} < 2.9 \cdot 10^{-26} \, {\rm e\, cm} \, \& \, d_{\rm p} < 7.9 \cdot 10^{-25} \, {\rm e\, cm}$

Baker et al. (2006), Dimitriev & Sen'kov (2003) & Griffith et al. (2009) Hg atom → the actual test range is rather

$$\therefore \quad 10^{-26}\,{\rm e}\cdot{\rm cm} < d_N < 10^{-31}\,{\rm e}\cdot{\rm cm}$$

Quoting Michael Ramsey-Musolf:

- 'n-EDM has killed more theories than any other single experiment'
- EDMs provide a powerful probe on EW baryogenesis
- Next generation of EDM searches (~ $10^{-28} e \cdot cm$) may conclusively test MSSM EW baryogensis.

Bill Marciano: $H \rightarrow \gamma \gamma$ beyond SM expectations (1.5 – 2 σ) testable in 2-loop Higgs contributions to fermion EDMs rather than in diboson decays at LHC

Input from many corners of theoretical physics:

(similarly to EDM measurements which use expertise/experts from many areas of experimental research, accelerator physics, non-linear dynamics)

- High energy (beyond-SM) physics, LHC results (Bill Marciano)
- EW Baryogenesis (Michael Ramsey-Musolf)
- Lattice QCD (Gerrit Schierholz and Taku Izubuchi)
- Chiral perturbation theory for nEDM (and pEDM) and relation (chiral & volume extensions) to Lattice QCD (Ulf Meißner)
- Low-energy effective field theory for deuteron, ³He (and ³H) EDMs (Bira van Kolck, Jan Bsaisou, Jordy de Vries)

What to measure (?)

in the case of quark- and/or gluon-type EDMs?

- A positive measurement of the permanent EDM of any non-self-conjugating particle with spin (elementary or composed) is sufficient to establish the principle
- **2** To disentangle the mechanism, more measurements are needed: d_n , d_p , d_D , ... for quark- and gluon-type EDMs
- 3 The most distinctive mechanism is the dimension-four QCD θ -term. Measurements of the proton and neutron (and the deuteron) EDM might be sufficient to extract and test the $\bar{\theta} \leq 10^{-10}$ angle.

Reliable quantitative statements

Note: EDMs measurements are low-energy measurements

Thus, the pertinent theoretical treatment must be of low-energy and non-perturbative nature! We have two candidates:

- 1 lattice QCD
- 2 and low-energy effective field theories (extensions of chiral perturbation theory)
- In the long run lattice QCD will have the highest potential to predict proton and neutron EDMs:
- at least for the QCD θ -term induced EDMs.
- But applicability is an open question for
 - dimension-six operators beyond the SM (*e.g.* qEDM, qCEDM, gCEDM or four-quark EDMs)
 - and even more so for light nuclei (*e.g.* d, ³He, t, or ⁷Li)

The role of EFT EDM-Translator from "quarkish" to "hadronic" language?

The role of EFT EDM-Translator from "quarkish" to "hadronic" language?

 \rightarrow

Symmetries, esp. Chiral Symmetry and Goldstone Theorem Low-Energy Effective Field Theory with External Sources

Outlook:

- EDMs are ideal probes for the CP physics beyond the SM
- EDMs of light nuclei provide independent information to p and n
- EDMs of light nuclei may be larger & simpler than nucleon EDMs
- qEDM dominates if nuclear EDM is sum of nucleon EDMs
- Nuclear calculation possible up to accuracy of a few %
- Deuteron is a filter for the isospin-dependent qCEDM
- θ EDM: $d_{^{3}\text{He}} 2d_{\text{p}} d_{\text{n}} \iff \bar{\theta} \iff \text{p-,n-EDM}$

Outlook: May the force be with us!

- EDMs are ideal probes for the CP physics beyond the SM
- EDMs of light nuclei provide independent information to p and n
- EDMs of light nuclei may be larger & simpler than nucleon EDMs
- qEDM dominates if nuclear EDM is sum of nucleon EDMs
- Nuclear calculation possible up to accuracy of a few %
- Deuteron is a filter for the isospin-dependent qCEDM

•
$$\theta$$
EDM: $d_{^{3}\text{He}} - 2d_{p} - d_{n} \iff \overline{\theta} \iff p$ -,n-EDM
From the theory point: a measurement of *p*, *n*, *d*, and ³He EDM is necessary to disentangle the underlying physics