Theory IV: Physics beyond the Standard Model

HPSS2014 | Schloss Rauischholzhausen | September 3, 2014 | Andreas Wirzba

Prolog: the Standard Model (SM) of particle physics

- The theory of strong, electromagnetic and weak interactions
- Gauge field theory based on $SU(3)_c \times SU(2)_L \times U(1)_Y$ with Yukawa couplings of the fermions to the Higgs

Extremely successful:

All fundamental particles detected and their properties mapped out

Latest spectacular entry: the **Higgs boson** (2012, Nobel prize '13) +

Most precise theory ever formulated: anomalous magnetic moment a_e agrees to **11 digits** with experiment

However, there are also '*dark clouds*'...

The clash of the Standard Models

- Particle physics versus Cosmology
 - Inflation
- Gravity
- Dark matter
- Matter-antimatter asymmetry and CP violation
- Dark energy

. . .

plus sole SM problems as

- □ Hierachy problem (fine-tuning)
- Grand unification and proton decay
- anomalous magnetic moment of muon
- □ strong CP problem

Fig. courtesy of PDG, LBNL©2014

Matter Excess in the Universe

Fig. courtesy of PDG, LBNL © 2014

1 End of inflation: $n_B = n_{\bar{B}}$

2 Big Bang Nucleosynthesis (t~3 min)

- 3 Cosmic Microwave Bkgr. $(t \sim 3.8 \cdot 10^5 \text{ y})$
 - SM(s) prediction:* $(n_B-n_{\bar{B}})/n_{\gamma}|_{\text{CMB}} \sim 10^{-18}$

• Planck 2013: $n_B/n_{\gamma}|_{CMB} = (6.047 \pm 0.074)10^{-10}$ $n_{\gamma}|_{CMB} = 410.7(T/2.7255 K)^3 cm^{-3}$ PDG 2013 partial update • BBN D/H (& He/H ratios): $5.7 \cdot 10^{-10} < n_B/n_{\gamma} < 6.7 \cdot 10^{-10}$ PDG 2013 partial update

 $(*) 2J_{\text{Jarlskog}}^{\text{CKM}}(m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2) \sim 10^{-18} M_{\text{EW}}^{12}$

Part I: Dark Matter

via **gravitational effects** on visible matter, radiation and large scale structures of the universe

via **gravitational effects** on visible matter, radiation and large scale structures of the universe

Rotation curves

Figs. courtesy of PDG, LBNL ©2005, 2007

Vera Rubin '75; precursors: Jan Oort '32, Fritz Zwicky '33

 $\Rightarrow v(r) = \sqrt{\frac{G_N M(r)}{r}} \approx \text{ constant}$ instead of $1/\sqrt{r}$

 \Rightarrow *M*(*r*) \propto *r* instead of constant

via **gravitational effects** on visible matter, radiation and large scale structures of the universe

- Rotation curves
- Anisotropies in the Cosmic Microwave Background

via gravitational effects on visible matter, radiation and large scale structures of the universe

- Rotation curves
- Anisotropies in the Cosmic Microwave Background

via **gravitational effects** on visible matter, radiation and large scale structures of the universe

- Rotation curves
- Anisotropies in the Cosmic Microwave Background
- Gravitational lensing

Fig. courtesy PDG, LBNL ©2005, 2007

via **gravitational effects** on visible matter, radiation and large scale structures of the universe

- Rotation curves
- Anisotropies in the Cosmic Microwave Background
- Gravitational lensing

e.g., by the Bullet Cluster of distant background objects dark mass : visible mass $\approx 10:1$

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Andreas Wirzba

Fig. courtesy of CHANDRA, NASA

Dark matter particles

interact only by gravity and maybe by (a) weak interaction

Examples: WIMPs (= weakly interacting massive particles) LSP (= lightest superparticle), axions, neutrinos (light or sterile), ...

Detection:

- direct detection experiments: search for scattering of DM particles off atomic nuclei from cosmic rays
- indirect detection: search for the products of DM annihilations (excess of gamma rays, antiprotons or positrons)
- production experiments in the Lab producing either an excess of standard model particles or dark matter particles (missing mass)

Overview of Theories of Dark Matter particles

Light Dark Matter with *m_{DM}* < 1 GeV ?

1 Cold dark matter versus Hot dark matter Non-relativistic (WIMP, axion, LSP, ν_{ster} , ...) vs. relativistic (ν_e , ν_μ , ν_τ) particles Bottom-up vs. top-down structure formation of galaxies and ...

- → observations of high-red shift galaxies (Hubble Ultra-Deep Field)
 → CDM wins
- 2 Lee-Weinberg bound on WIMPs B.W. Lee & S. Weinberg, *PRL*'77 $\sigma_{\text{annih.}}^{\text{DM}} \approx m_{\text{DM}}^2/M_{Z,Z'}^4 \longrightarrow m_{DM} \gtrsim 2 \,\text{GeV}$, otherwise

too high relic WIMP density such that universe would close again.

3 Light Dark Matter seems to be excluded

Light Dark Matter with *m_{DM}* < 1 GeV ?

Cold dark matter versus Hot dark matter
 Non-relativistic (WIMP, axion, LSP, ν_{ster}, ...) vs. relativistic (ν_e, ν_μ, ν_τ) particles
 Bottom-up vs. top-down structure formation of galaxies and ...
 → observations of high-red shift galaxies (Hubble Ultra-Deep Field)

 \implies CDM wins

2 Lee-Weinberg bound on WIMPs B.W. Lee & S. Weinberg, *PRL*'77 $\sigma_{\text{annih.}}^{\text{DM}} \approx m_{\text{DM}}^2/M_{Z,Z'}^4 \longrightarrow m_{DM} \gtrsim 2 \,\text{GeV}$, otherwise

too high relic WIMP density such that universe would close again.

3 Light Dark Matter seems to be excluded

unless something else cranks up $\sigma_{\rm annih.}^{\rm DM}$ of the light DM particles

Light Dark Matter with *m_{DM}* < 1 GeV ?

Cold dark matter versus Hot dark matter
 Non-relativistic (WIMP, axion, LSP, ν_{ster}, ...) vs. relativistic (ν_e, ν_μ, ν_τ) particles
 Bottom-up vs. top-down structure formation of galaxies and ...
 → observations of high-red shift galaxies (Hubble Ultra-Deep Field)

 \implies CDM wins

2 Lee-Weinberg bound on WIMPs B.W. Lee & S. Weinberg, *PRL*'77 $\sigma_{\text{annih.}}^{\text{DM}} \approx m_{\text{DM}}^2/M_{Z,Z'}^4 \longrightarrow m_{DM} \gtrsim 2 \,\text{GeV}$, otherwise

too high relic WIMP density such that universe would close again.

3 Light Dark Matter seems to be excluded

unless something else cranks up $\sigma_{\text{annih.}}^{\text{DM}}$ of the light DM particles

→ Dark Carrier or Dark Force Portals

Dark Carrier Portals

Neutral hidden sectors

- interacting with DM particles,
- but only weakly coupled to the SM

Dark Carrier Portals

Neutral hidden sectors

- interacting with DM particles,
- but only weakly coupled to the SM

DM SM Messenger

Only three **flavor-universal** portals in the SM with leading (relevant or marginal) interactions

- **1** Higgs interaction with a scalar operator $O_s H^{\dagger} H$
- 2 right-handed neutrino coupling LHN_R
- 3 kinetic mixing of new U(1) vector U_{μ} with the hypercharge $B_{\mu\nu}U^{\mu\nu}$

Dark Carrier Portals

Neutral hidden sectors

- interacting with DM particles,
- but only weakly coupled to the SM

Only three **flavor-universal** portals in the SM with leading (relevant or marginal) interactions

- **1** Higgs interaction with a scalar operator $O_{s}H^{\dagger}H$
- 2 right-handed neutrino coupling LHN_R
- 3 kinetic mixing of new U(1) vector U_{μ} with the hypercharge $B_{\mu\nu}U^{\mu\nu}$
 - → bilinear mixing with the photon: Dark Photon Portal
 - \hookrightarrow experimentally testable, allows for a vector which is naturally light

$$\hookrightarrow \mathcal{L}_V = -\frac{\varepsilon}{2} F_{\mu\nu} U^{\mu\nu} + \frac{1}{2} m_U^2 U^\mu U_\mu - \frac{1}{4} U_{\mu\nu} U^{\mu\nu}$$

Just two parameters: ε and m_U

 $(m_U$ either fundamental Stückelberg mass or generated by a Dark Higgs mechanism) Andreas Wirzba 11/21

What is the dark photon of MeV – GeV mass good for?

Excess of galactic electron and/or positron cosmic rays

ATIC Nature '08; H.E.S.S. PRL '08; PAMELA Nature '09

• narrow 0.511 MeV γ ray emission from the galactic center

INTEGRAL, A&A '03

• $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$ discrepancy (of the anom. mag. mom. of the muon) $a_{\mu}^{exp} - a_{\mu}^{SM} = (288 \pm 80) \cdot 10^{-11}$ (*i.e.* 3.6 σ) Bennett et al. (Muon G-2) Coll., *PRD* '06

What is the dark photon of MeV – GeV mass good for?

Excess of galactic electron and/or positron cosmic rays

ATIC Nature '08; H.E.S.S. PRL '08; PAMELA Nature '09

• narrow 0.511 MeV γ ray emission from the galactic center

INTEGRAL, A&A '03

• $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$ discrepancy (of the anom. mag. mom. of the muon) $a_{\mu}^{exp} - a_{\mu}^{SM} = (288 \pm 80) \cdot 10^{-11}$ (*i.e.* 3.6 σ) Bennett et al. (Muon G-2) Coll., *PRD*⁻¹⁰⁶

What is the dark photon of MeV – GeV mass good for?

Excess of galactic electron and/or positron cosmic rays

ATIC Nature '08; H.E.S.S. PRL '08; PAMELA Nature '09

• narrow 0.511 MeV γ ray emission from the galactic center

INTEGRAL, A&A '03

• $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$ discrepancy (of the anom. mag. mom. of the muon) $a_{\mu}^{exp} - a_{\mu}^{SM} = (288 \pm 80) \cdot 10^{-11}$ (*i.e.* 3.6 σ) Bennett et al. (Muon G-2) Coll., *PRD* '06

Bounds on coupling and mass of the dark photon

Part II: electric dipole moments of subatomic particles

- Unfortunately, here only very brief
- For more details,

see Jörg Pretz' EDM lecture, today, 11:05

or see:

A. Wirzba, Nucl. Phys. A **928** (2014), 116-127 (http://dx.doi.org/10.1016/j.nuclphysa.2014.04.003), arXiv:1404.6131 [hep-ph] (http://arxiv.org/abs/1404.6131)

Matter Excess in the Universe

Fig. courtesy of PDG, LBNL ©2014

1 End of inflation: $n_B = n_{\bar{B}}$

2 Cosmic Microwave Bkgr.

SM(s) prediction:*

 (n_B-n_B)/n_γ|_{CMB} ~ 10⁻¹⁸

• *Planck* 2013 & BBN(D/H): $n_B/n_\gamma|_{CMB} = (6.047 \pm 0.074) 10^{-10}$ PDG 2013 part. update

Sakharov conditions ('67) for dyn. generation of net *B*:

B violation to depart from initial B=0

C & CP violation to distinguish *B* and \overline{B} production rates

3 out of thermal equilibrium to dist. *B* production from back reaction and to escape (*B*)=0 if CPT holds

In the SM?

CP violation and the Electric Dipole Moment (EDM)

EDN	1: $\vec{d} = \sum_i \vec{r}_i e_i$ (polar)	subatomic particles	$d \cdot \vec{S} / \vec{S} $
	$\mathcal{H} = -\mu \frac{\vec{s}}{S} \cdot \vec{B}$	$- d\frac{\vec{s}}{s} \cdot \vec{E}$	
P:	$\mathcal{H} = -\mu \frac{\vec{s}}{s} \cdot \vec{B}$	+ $d\frac{\vec{s}}{S} \cdot \vec{E}$	
T:	$\mathcal{H} = -\mu \frac{\vec{s}}{s} \cdot \vec{B}$	+ $d\frac{\vec{s}}{s} \cdot \vec{E}$	

Any *non-vanishing EDM* of a non-deg. (subatomic) particle violates **P** & **T**

- Assuming CPT to hold, CP is violated as well → subatomic EDMs: "rear window" to CP violation in early universe
- Strongly suppressed in SM (CKM-matrix): $|d_n| \sim 10^{-31} e \text{ cm}$, $|d_e| \sim 10^{-38} e \text{ cm}$
- Current bounds: $|d_n| < 3 \cdot 10^{-26} e \text{ cm}, |d_p| < 8 \cdot 10^{-25} e \text{ cm}, |d_e| < 1 \cdot 10^{-28} e \text{ cm}$

n: Baker et al. (2006), *p* prediction: Dimitriev & Sen'kov (2003)^{*}, *e*: Baron et al. (2013)[†] * from $|d_{199_{Hn}}| < 3.1 \cdot 10^{-29}$ ecm bound of Griffith et al. (2009)
[†] from polar ThO: $|d_{ThO}| \leq 10^{-21}$ ecm

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{X}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

Werner Bernreuther (RWTH Aachen, 2012)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \otimes \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

There are always vacuum polarizations with rich short-distance structure

(g-2 of the electron and muon aren't exactly zero either)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \And \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \text{ under } \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \And \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \text{ under } \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H_2O or NH_3 molecules?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \, \middle| \, j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \, \middle| \, j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \, \middle| \, j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \, \middle| \, j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H_2O or NH_3 molecules?'

The ground states of these molecules at non-zero temperatures or strong *E*-fields are mixtures of at least 2 opposite parity states:

The theorem doesn't apply for degenerate states: neither \mathcal{X} nor \mathcal{P} !

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \to \mp \langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle \And \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \to \pm \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle \text{ under } \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

The induced EDM is *quadratic* in the electric field and *not* \mathcal{P} or \mathcal{X}

induced EDM	\longleftrightarrow	quadratic Stark effect ($\propto E^2$)
permanent EDM	\longleftrightarrow	linear Stark effect ($\propto E$)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} \equiv \int \vec{r} \rho(\vec{r}) d^3 r$ be an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \to \mp \left\langle j^{\mathsf{P}} \middle| \, \vec{d} \middle| j^{\mathsf{P}} \right\rangle \ \& \ \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \to \pm \left\langle j^{\mathsf{P}} \middle| \, \vec{J} \middle| j^{\mathsf{P}} \right\rangle \ \text{under} \ \begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

If the interactions are described by an action which is

local, Lorentz-invariant, and hermitian

then CPT invariance holds: thus

$$\mathcal{T} \iff \mathcal{CP}$$

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N=\frac{e}{2m_p}\sim 10^{-14}e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot F_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2}),$

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-})| / |\mathcal{A}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $G_F F_{\pi}^2$ factor to undo flavor change

$$\Rightarrow \left| \left| d_N^{\text{SM}} \right| \sim 10^{-7} \times 10^{-24} e \,\text{cm} \sim 10^{-31} e \,\text{cm} \right|$$

 \hookrightarrow The empirical window for search of physics BSM(θ =0) is

 $10^{-24}e\,\mathrm{cm} > |d_N| > 10^{-30}e\,\mathrm{cm}.$

Chronology of upper bounds on the neutron EDM

Three motivations for EDM searches

Why are EDMs interesting to measure?

A search for new physics which is *'background free'* Many beyond-the-SM models predict large EDMs: Complementary to LHC search Matter/Antimatter asymmetry requires more CPV: EDMs are excellent probes

Some questions that you hopefully can answer:

- Why is physics beyond the Standard Model expected?
- What are the evidences for dark matter?
- How can light DM escape the Lee-Weinberg bound?
- Why is especially the dark photon so appealing?
- How can a point particle (e.g. an electron) support an EDM?
- Why don't the nonzero EDMs of certain molecules signal CP?
- What is the natural scale of a neutron EDM *i.g.* (in the SM)?
- How large is the EDM window for New Physics searches?

From CP-violating BSM operators to hadronic ones

W. Dekens & J. de Vries JHEP '13

Road map from EDM Measurements to EDM Sources

Experimentalist's point of view \rightarrow

← Theorist's point of view

EDM Rosetta Stone from 'quarkish/machine' to 'hadronic/human' language?

EDM Rosetta Stone from 'quarkish/machine' to 'hadronic/human' language?

→ Symmetries (esp. chiral one) plus Goldstone Theorem
 → Low-Energy Effective Field Theory with External Sources
 i.e. Chiral Perturbation Theory (suitably extended) •

Jump slides

EW Baryogenesis: Standard Model

EW Baryogenesis: Standard Model

Conservation of the Baryon–Lepton current under (L - R) interactions:

Sakharov criteria

- B violation $\sqrt{(\Delta(B+L) \neq 0 \text{ sphaleron transitions})}$
- 2 C & CP violation x (CKM determinant)
- 3 Nonequilibrium dynamics x(only fast cross over for $\mu_{chem} = 0$)

Construction of the CKM matrix

Since weak interactions do not respect the global flavor symmetry, there is mixing within the groups of quarks with the same charge:

$$U \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} \rightarrow \tilde{U} = M_U U, \qquad D \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix} \rightarrow \tilde{D} = M_D D,$$

where $M_U \& M_D$ are 3×3 unitary matrices

$$\hookrightarrow \text{ charged weak current: } J_{\mu} = \overline{\tilde{U}}^{\mu} \gamma_{\mu} (1 - \gamma_5) \widetilde{D}^{\mu} = \overline{U} \gamma_{\mu} (1 - \gamma_5) \underbrace{\mathcal{M}}_{U}^{\dagger} \mathcal{M}_{D} D.$$

- *M* unitary $N_f \times N_f$ matrix for N_f quark families $\sim N_f^2$ real parameters.
- $2N_f 1$ of these can be absorbed by the relative phases of the quark wave functions $\rightarrow (N_f 1)^2$ remaining parameters:

N_f = 2: one remaining real parameter: Cabibbo angle

 $N_f = 3$: O(3) matrix with $\frac{1}{2}3 \cdot (3-1) = 3$ angles *plus* 1 \mathcal{OP} phase

Lepton case: neutrinos may be Majoranas: → 3 angles plus 3 GP phases

■ If phase(s) present, *M* complex matrix, whereas CP invariance ~> *M*^{*} = *M* ! Andreas Wirzba

Big Bang Nucleosynthesis (BBN)

$$\frac{1}{\eta_B} e^{-\Delta_D/T} \stackrel{!}{\approx} 1 \quad \text{with } \Delta_D = 2.23 \, \text{MeV}$$

and
$$\eta_{10} = 10^{10} \eta_B = 10^{10} n_B / n_{\gamma}$$
,

$$Y \equiv \rho(^{4}\text{He})/\rho(\text{H}) = \frac{2n/p}{1+n/p} \simeq 0.25$$

if $n/p \approx 1/7$

Fig. courtesy of PDG update '13

