Systematic Error Investigation of the Spin Tune Analysis for an EDM Measurement at COSY

DPG Frühjahrstagung Heidelberg
Fabian Trinkel, IKP 2 Forschungszentrum Jülich

March 27th, 2015 | Fabian Trinkel on behalf of the JEDI collaboration
Introduction

- Motivation for an EDM (Electric Dipole Moment) search:
 - CP violation

Challenge:
Disentangle EDM from systematic effects

Systematic Tests of the Spin Tune Analysis
Spin Tune Measurement

@ COSY: deuteron beam with a momentum of 0.970 GeV/c

\[\nu_s = \frac{\text{spin rotations}}{\text{particle revolutions}} = \frac{|\Omega_s|}{\omega_{cycl}} \approx |\gamma G| \approx 0.1609 \]

Spin-Precession: \(f_s = \nu_s f_{rev} \sim 120 \text{ kHz} \quad (f_{rev} = 750 \text{ kHz}) \)

Counting Rates:
\[
\begin{align*}
N_{up}(t) &= a_{up}(t) \cdot [1 + P(t)A \cdot \sin(2\pi f_s t + \phi)] \\
N_{dn}(t) &= a_{dn}(t) \cdot [1 - P(t)A \cdot \sin(2\pi f_s t + \phi)]
\end{align*}
\]

- \(a \): Acceptance
- \(P \): Polarization
- \(A \): Analysing Power

Event rate: 5 kHz

500000 Events are detected for a 100 s cycle
Asymmetry Measurement

Counting Rates:
\[
N_{up}(t) = a(t) \cdot [1 + P(t)A \cdot \sin(2\pi f_s t + \phi)]
\]
\[
N_{dn}(t) = a(t) \cdot [1 - P(t)A \cdot \sin(2\pi f_s t + \phi)]
\]

Up-Down asymmetry (for constant \(a\) & \(PA\))
\[
\varepsilon_{hor} = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}} = PA \cdot \sin(2\pi f_s t + \phi)
\]

\[\epsilon_{hor} = 0\]

\[\epsilon_{hor} = PA\]
Measurement of the Spin Tune

Problem:
• On average one hit in detector every 25th beam revolutions
 ⇒ No direct fit possible

Solution:
• Map all events into first spin oscillation period
• Calculate asymmetry for an one second interval and fit a sine

Assumption: Acceptance a and Polarization PA are constant in this time interval
Generate Random Time Values

1 Step: Assume a Linear Time dependency of Polarization and Acceptance

\[N_{up, dn}(t) = \begin{cases} a_{up}(1 - \varepsilon_2 t)[1 + PA(1 - \varepsilon_1 t) \cdot \sin(2\pi f_s t + \varphi)] \\ a_{dn}(1 - \varepsilon_2 t)[1 - PA(1 - \varepsilon_1 t) \cdot \sin(2\pi f_s t + \varphi)] \end{cases} \]

2 Step: Generate Uniform distribution for \(x_1 \) & \(x_2 \) [0,1]

Calculating a Probability with the generated \(t \)

\[p_{up}(t) = \frac{N_{up}(t)}{N_{up}(t) + N_{dn}(t)} \]

\(p_{up} \leq x_1 \) & \(x_2 > a_{up} \)

Event in up-Detector

\(p_{up} > x_1 \) & \(x_2 > a_{dn} \)

Event in dn-Detector

Generate Uniform time values [0,100] s

March, 27th 2015
Data Simulation of three different Cases

1. Constant PA and a

\[PA \]

\[a_0 \]

2. Linear decreasing PA and constant a

\[PA \]

\[a_0 \]

3. Linear decreasing PA and a

\[PA \]

\[a_0 \]

Analysis assumes a constant Polarization PA and Acceptance a
Parameters for fixed Spin Tune Simulations

\[N_{\text{up, dn}}(t) = \begin{cases}
\ a_{\text{up}}(1 - \varepsilon_2 t)[1 + PA (1 - \varepsilon_1 t) \cdot \sin(2\pi f_s t + \varphi)] \\
\ a_{\text{dn}}(1 - \varepsilon_2 t)[1 - PA (1 - \varepsilon_1 t) \cdot \sin(2\pi f_s t + \varphi)]
\end{cases} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>up</th>
<th>dn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) [%]</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(PA) [%]</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>(f_s) [kHz]</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>(\varphi) [rad]</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For each case 1000 data files with 500000 time values are generated for same Spin Tune.
Spin Tune determination for the Simulations

- Analysis determines a ν_s for each simulation
- Variance of the Spin Tune $\Delta \nu_s$ is determined

Systematic Error of the Spin Tune Analysis: 10^{-11}

Case 1: Constant PA and a

$\mu = (3.6 \pm 5.8) \cdot 10^{-12}$

Case 2: Linear decreasing PA and constant a

$\mu = (-9.5 \pm 6.9) \cdot 10^{-12}$

Case 3: Linear decreasing PA and a

$\mu = (-1.5 \pm 5.6) \cdot 10^{-12}$
Outlook & Summary

• The JEDI Collaboration developed a method to determine the Spin Tune with high precision

• The results show that the Spin Tune Analysis is robust: systematic error 10^{-11}

The statistical error for a real deuteron measurement is of the order 10^{-10}
Decreasing Polarization or Acceptance do not effect the Analysis Method