

Tracking Studies towards EDM Measurements at COSY

2015-02-23 | Marcel Rosenthal

Outline

Part 1: Introduction

- > What are Electric Dipole Moments?
- General idea for EDM measurements in storage rings
- > The Cooler Synchrotron COSY, Jülich
- Thomas-BMT-equation

Part 2: Simulations

- Simulation framework
- Measurement principle at COSY, Jülich
- False signal due to magnet imperfections

CP-Violating permanent EDMs

- Electric Dipole Moments:
 - Charge separation
 - Fundamental property
- Permanent EDMs are P- and T-violating
 CPT-Theorem: CP-Violation
- Known CP-Violation not sufficient to explain Matter-Antimatter-Asymmetry in universe
- Search for new sources of CP-Violation (@-term, BSM) by measuring Electric Dipole Moments of charged hadrons in storage rings

EDM measurements in storage rings

General idea:

- Inject polarised particles with spin pointing towards momentum direction
- > *"Frozen Spin"-*Technique: without EDM spin stays aligned to momentum
- EDM couples to electric bending fields
- Slow buildup of EDM related vertical polarisation

The Cooler Synchrotron COSY

Thomas-BMT-Equation

Equation of spin motion for relativistic particles in electromagnetic fields:

$$\frac{dS}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{e}{\gamma m} \left[G\gamma \vec{B} - \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right]$$
$$\vec{\Omega}_{EDM} = -\frac{e}{m} \frac{\eta}{2} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\mu} = 2(G+1) \cdot \frac{e}{2m} \vec{S}$$
 Proton 1.792847357
Deuteron -0.142561769

$$\vec{d} = \eta \cdot \frac{e}{2mc} \vec{S}$$

$$\frac{d}{10^{-24} e cm} \sim 10^{-9}$$
 $10^{-29} e cm \sim 10^{-14}$

Thomas-BMT-Equation (pure magnetic) U JÜLICH

Equation of spin motion for relativistic particles in electromagnetic fields:

$$\frac{dS}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{e}{\gamma m} \left[G\gamma \vec{B} - \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right]$$
$$\vec{\Omega}_{EDM} = \frac{e}{m} \frac{\eta}{2} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right] \ll |\vec{\Omega}_{MDM}|$$

- Cooler Synchrotron Jülich is conventional pure magnetic ring:
 - > Spin precesses around vertical guiding field.
 - Invariant Spin Axis (Spin Closed Orbit) is vertical
 - > Number of spin precessions per revolution (with respect to the momentum vector) is given by the spin tune $v_s = G\gamma$
 - > *"Frozen Spin"-*Technique requires $\vec{\Omega}_{MDM} = 0$
 - Not applicable in pure magnetic ring

Measurement Principle @ COSY

- > Idea:
 - Radiofrequent field oscillating with spin precession frequency
 - > Pure electric field: coherent betatron oscillations
 - Minimization using Wien filter configuration
 - » RF-E×B-Dipole

$$\vec{\Omega}_{\text{MDM}} = \frac{e}{\gamma m} \left[\mathbf{G} \gamma \, \vec{B} - \left(\mathbf{G} \gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{\mathbf{G} \gamma^2}{\gamma + 1} \, \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right] \qquad \vec{E} \qquad \vec{B} \qquad \vec$$

- > Device is EDM transparent \Rightarrow no tilt ($\xi = 0$)
 - Polarization signal:

$$\sin(\theta \cdot n) \approx \theta \cdot n$$
$$\theta \approx \frac{\psi \xi}{2}$$
$$\psi: \text{max. spin rotation in RF field}$$
$$\xi: \text{ EDM tilt}$$

$$\tan \xi = 0 \text{ in RF-E×B-Dipole}$$
$$\tan \xi = -\frac{\eta\beta}{2G} \neq 0 \text{ in Ring}$$

Mitglied der Helmholtz-Gemeinschaft

Outline

Part 1: Introduction

- > What are Electric Dipole Moments?
- General idea for EDM measurements in storage rings
- > The Cooler Synchrotron COSY, Jülich
- > Thomas-BMT-equation

Part 2: Simulations

- Simulation framework
- Measurement principle at COSY, Jülich
- False signal due to magnet imperfections

Simulation framework

- Tracking by COSY Infinity (DA-based transfer map calculation)
- New package on top of COSY Infinity

11

Measurement Principle @ COSY

- Excite EDM related spin resonance
- > Ideal ring and RF-E×B-Dipole \rightarrow no buildup without EDM
- > Simulated: Polarized deuteron, p = 970 MeV/c

RF-E×B-Dipole: B = 0.1 mT, l = 0.6 m

Measurement Principle @ COSY

- Excite EDM related spin resonance
- > Ideal ring and RF-E×B-Dipole \rightarrow slow buildup with EDM
- > Simulated: Polarized deuteron, p = 970 MeV/cRF-E×B-Dipole: B = 0.1 mT, l = 0.6 m

mholtz-Gemeinschaft

Mitglied der Hel

2015-02-23

Mitglied der Helmholtz-Gemeinschaft

 \succ

Pol. Buildup per Turn

 \triangleright

 \geq

EDM Measurements @ COSY

Buildup-rate proportional to

EDM magnitude

- Field strengths of RF-E×B-Dipole $\tan \xi = -\frac{\eta \beta}{2G}$ B = 1 mTB = 0.1 mT
- $\sin(\theta \cdot n) \approx \theta \cdot n$ 10-7 $\theta \approx \frac{\psi\xi}{2}$ 10⁻⁸ $\tan \xi = 0$ in RF-ExB-Dipole $\tan \xi = 0$ in Ring 10⁻⁹ 10⁻¹⁰ B = 0.01 mT10⁻¹¹ 10⁻¹² 10⁻⁵ 10⁻³ η 10⁻⁶ 10-4

 $\eta \approx 10^{-4} \leftrightarrow d \approx 5 \cdot 10^{-19} \text{e cm}$

Misalignments

- > Up to now only the ideal machine was demonstrated
- Misalignments and field errors can introduce fake EDM like signals
 - Tilt of Invariant Spin Axis at location of RF-ExB-Dipole
 - Rotation of RF-ExB-Dipole itself
 - Phasespace-Motion
- COSY main magnets:
 - > 24 dipoles
 - > 56 quadrupoles
- Orbit diagnosis & correction:
 - ~60 beam position monitors
 - ~40 correctors

Misalignments

- In this talk, focus on misalignments in the ring:
 - Introduction of radial fields by vertical offsets of focusing quadrupoles
- Method:
 - > Random Gaussian distribution of misalignment errors with $\sigma = 10^{-6} .. 10^{-3}$ meter (or radian respectively)
 - > Study of correction possibilities with existing orbit correction system.
- Correction algorithm in this study:
 - "Best corrector"-method:
 - Select corrector with largest influence
 - Correct orbit
 - Select next corrector ...

Fake-EDM-signal

Mitglied der Helmholtz-Gemeinschaft

Polarization buildup and orbit offsets

Investigate correlation of vertical orbit offsets at quadrupole centers and polarization buildup

Mitglied der Helmholtz-Gemeinschaft

Orbit Correction

- > Two orbit correction aims:
 - 1. Minimize orbit offsets at existing beam position monitors
 - 2. Minimize orbit offsets with respect to quadrupole centers

Fake-EDM-signal for quadrupole shifts UJÜLICH

 Existing correctors allow for reduction of about one order of magnitude

EDM Measurements @ COSY

Summary and Outlook

- Simulation framework successfully extended:
 - EDM contribution and radiofrequency fields.
- > Tough requirements for EDM measurements in pure magnetic rings:
 - > Quadrupole shifts of 0.1 mm: estimated systematic limit $\eta \approx 10^{-4} \rightarrow d \approx 5 \cdot 10^{-19}$ e cm

- Plans: Optimization of correction algorithm to take also spin motion into account
 - Idea: Correction of invariant spin axis tilt caused by imperfections
 - Preserve tilt caused by EDM
- Investigation of alignment options for the RF-ExB-Dipole itself
- Investigation of phase space motion

SPARES

Fake-EDM-signal for dipole rolls

- > Two orbit correction aims:
 - 1. Minimize orbit offsets at existing beam position monitors
 - 2. Minimize orbit offsets with respect to quadrupole centers

Spin Coherence Time

- > Spin precession in ideal magnetic ring around vertical axis:
 - > Spin tune: $v_s = G\gamma$

compensation

200

no compensation

www.

400

Energy deviations lead to different precession speed

600

Horizontal polarization vanishes!

- Buildup limited by
 Spin Coherence Time
 - Decoherence needs to be minimized

Horizontal Polarization

0.0035

0.003

0.0025

0.002

0.0015

0.001

0.0005

800

1000

turn

Spin Coherence Time

- > Spin precession in ideal magnetic ring around vertical axis:
 - > Spin tune: $v_s = G\gamma$
 - Energy deviations lead to different precession speed

Consider relative change of revolution time of single particle:

$$\frac{\Delta T}{T_0} = \frac{\Delta L}{L_0} - \frac{\Delta \beta}{\beta_0} - \frac{\Delta L}{L_0} \frac{\Delta \beta}{\beta_0} + \left(\frac{\Delta \beta}{\beta_0}\right)^2$$
 with $T_0 = \frac{L_0}{\beta_0 c}$

No coupling:

Mitglied der Helmholtz-Gemeinschaft

Spin Coherence Time II

bunched

$$\succ \quad \left\langle \frac{\Delta T}{T_0} \right\rangle = \left(\alpha_0 - \frac{1}{\gamma_0^2} \right) \left\langle \frac{\Delta p}{p} \right\rangle + \left(\alpha_1 + \frac{3}{2} \frac{\beta_0^2}{\gamma_0^2} - \frac{\alpha_0}{\gamma_0^2} + \frac{1}{\gamma_0^4} \right) \left\langle \left(\frac{\Delta p}{p} \right)^2 \right\rangle + \left\langle \left(\frac{\Delta L}{L_0} \right)_{\chi} \right\rangle + \left\langle \left(\frac{\Delta L}{L_0} \right)_{\chi} \right\rangle = 0$$

> Canceling energy deviations $(v_s = G\gamma)$: $\left(\frac{\Delta\gamma}{\gamma_0}\right) = 0$

 $\succ \quad \frac{\Delta p}{p} \approx \frac{1}{\beta_0^2} \frac{\Delta \gamma}{\gamma_0} - \frac{1}{2\beta_0^4 \gamma_0^2} \left(\frac{\Delta \gamma}{\gamma}\right)^2$

> Three conditions for $\left\langle \frac{\Delta \gamma}{\gamma_0} \right\rangle = 0$: > $\left\langle \left(\frac{\Delta L}{L_0} \right)_u \right\rangle = -\frac{\pi}{L_0} \cdot \epsilon_u \cdot \xi_u = 0, \quad u \in \{x, y\}$ > $\Delta \equiv \left[\alpha_1 + \frac{3}{2\gamma_0^2} \left(\beta_0^2 - \left(\alpha_0 - \frac{1}{\gamma_0^2} \right) \right) \right] = 0$ $\epsilon_u = \frac{u_{max}^2}{\beta_u}$ $\xi_u = \frac{\Delta Q_u / Q_u}{\Delta p / p}$

Magnetic sextupoles are an effective tool to maintain these conditions.

Mitglied der Helmholtz-Gemeinschaft

Sextupoles at COSY

Sextupoles at COSY

- Linear equation system to minimize $ξ_x, ξ_y$ and Δ at the same time
- > MXL dominates ξ_y change
- > MXG dominates ∆ change

