

STATIC AND OSCILLATING ELECTRIC DIPOLE MOMENT SEARCHES OF CHARGED PARTICLES IN STORAGE RINGS

STORI'24 HUIZHOU, CHINA

DAONING GU 顾道宁 on behalf of the JEDI collaboration

OUTLINE

- Motivation: Electric Dipole Moments and Axions / ALPs searches
- Measurement principles & experimental techniques
- Experiments Results: on static and oscillating EDMs
- Staged approach toward dedicated EDM ring
- Summary

MATTER ANTIMATTER ASYMMETRY

- Predominance of matter over antimatter in the Universe
- Baryon Asymmetry:

Baryon-to-photon ratio	
Observation	10 ⁻¹⁰
Theory (SMC)	10 ⁻¹⁸

According to A. Sakharov: CP Violation is needed.

ELECTRIC DIPOLE MOMENT (EDM)

- EDM : permanent separation of + and charges.
- Fundamental property of elementary particles.

$$\vec{d} = d \cdot \vec{s}$$

• Hamiltonian:

$$H = -\vec{d} \cdot \vec{E} - \vec{\mu} \cdot \vec{B}$$
$$P(H) = +\vec{d} \cdot \vec{E} - \vec{\mu} \cdot \vec{B}$$
$$T(H) = +\vec{d} \cdot \vec{E} - \vec{\mu} \cdot \vec{B}$$

• According to CPT Theorem: T Violation = CP Violation

EDM violates both P and CP symmetry

EDM LIMITS

- No direct measurements of electron and proton EDMs.
- No measurement of deuteron EDM.
- Higher sensitivity for charged hadrons (compared to neutrons)
 - □ longer lifetime
 - more stored polarized hadrons
 - Can apply larger electric fields

SPIN PRECESSION IN STORAGE RINGS

• Thomas-BMT Equation:

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{S}$$
$$\vec{\Omega}_{MDM} \qquad \vec{\Omega}_{EDM}$$

- magnetic dipole moment (MDM): $\vec{\mu} = 2(G+1)\frac{q\hbar}{2m}\vec{s}$
- electric dipole moment (EDM): $\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$
- note: $\eta = 2 \cdot 10^{-15}$ for d = $10^{-29} e cm$

$$G = \frac{g-2}{2}$$
. $G \approx 1.79$ for proton, $G \approx -0.14$ for deuteron

Ω: angular precession frequencyG: anomalous magnetic moment

FROZEN SPIN

• Thomas-BMT Equation:

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{S}$$
$$\vec{\Omega}_{MDM}$$
$$\vec{\Omega}_{EDM}$$

• Frozen spin: $\vec{\Omega}_{MDM} = 0$ (momentum and spin stay aligned)

>pure electric field for proton (G > 0): $G = \frac{1}{\gamma^2 - 1}$ > special combination of E, B fields and γ for deuteron (G < 0)

 $\rightarrow \vec{E}$ field causes the spin to precess out of the plane

Ω: angular precession frequencyG: anomalous magnetic moment

MEASUREMENT OF EDM IN STORAGE RING

- Injection of vertically polarized deuteron beam.
- Flip spin into horizontal plane with solenoid.
- Search for time development of vertical polarization.

• Determination of Beam Polarization:

Vertical Polarization: Left – Right Asymmetry

Horizontal Polarization: Up – Down Asymmetry

COoler SYnchrotron COSY

- Circumference: 184 m
- Polarized protons and deuterons
- Momenta: *p* = 0.3 3.7 GeV/c
- Selected working conditions:
 Deuteron beam,
 - p = 0.97 GeV/c, T = 238 MeV
- Beam cooling

After 30 years of operation COSY has been closed in 2023.

SPIN COHERENCE TIME (SCT)

• Spin Coherence Time (SCT): time after total polarization drops to 1/e.

Depolarization source:

- Beam emittance
- Momentum spread
- 1st & 2nd order effects
- Orbit deviations

Optimization:

- Electron Cooling
- Beam bunching
- Sextupole corrections

• Spin tune: $v_s = \gamma G$ number of spin precessions per turn.

SEXTUPOLE CORRECTIONS

- Correction effects of sextupole: [1]
 - orbit lengthening

$$\left(\frac{\Delta L}{L}\right)_{\beta} = \mp \frac{k_2 D_0 \beta_{x,y} \varepsilon_{x,y}}{L}$$

2nd-order momentum compaction factor

$$\Delta \alpha_1 = -\frac{k_2 {D_0}^3}{L}$$

Three or more families of sextupole are needed.

Page 12

SPIN COHERENCE TIME RECORD

- SCT > 1000 s achieved at COSY [2]
- With about 10⁹ stored deuterons.
- Long SCT was one of main obstacles of storage ring EDM experiments.
- SCT of crucial importance, since $\sigma_{stat} \propto \frac{1}{\tau_{scT}}$

WIEN FILTER

- Frozen spin: $\vec{\Omega}_{MDM} = 0 \rightarrow$ vertical build up.
- Problem: in a pure magnet ring, $\vec{\Omega}_{MDM} \neq 0$,

 \rightarrow no accumulation of vertical asymmetry.

• Solution: RF-Wien Filter

WIEN FILTER

Solution: RF-Wien Filter

- Lorentz force: $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$
- \rightarrow particle trajectory is not affected
- $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$
- \rightarrow spin motion is influenced
- RF-Wien Filter fields
- \rightarrow oscillate at a harmonic of the spin precession freq.

WF induced spin resonance \rightarrow vertical build up.

OBSERVATION OF POLARIZATION BUILD-UP

- RF-Wien Filter ON: vertical polarization build-up proportional to EDM .
- Problem: ring imperfections (magnet misalignments,..) lead to perturbations.
- Perturbations are under investigation

RESULTS FROM PRECURSOR EXPERIMENT

Tools developed to manipulate and measure beam polarization

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to 10^{-10} in 100 s
- development of polarization feed back system
- single bunch spin manipulation
- RF Wien filter, BPMs, deflector, polarimeter, ...

Page 16

AXION SEARCHES

AXIONS/AXION LIKE PARTICLES (ALPS)

- Axions are leading particle candidates for dark matter.
- Possible couplings to standard model particles:

storage ring experiments

• For low mass (< $10^{-7} \text{eV}/c^2$), ALPs dark matter can be expressed as a classical field:

$$a(t) = a_o \cos(\omega_a t + \varphi_o).$$

SPIN MOTION

• Spin motion in a purely magnetic ring:

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM} + \vec{\Omega}_{wind}) \times \vec{S}$$

$$\vec{\Omega}_{MDM} = -\frac{q}{m} G\vec{B}, \qquad \vec{\Omega}_{EDM} = -\frac{1}{S\hbar} dc\vec{\beta} \times \vec{B},$$

$$\vec{\Omega}_{wind} = -\frac{1}{S\hbar} \frac{c_N}{2f_a} (\hbar\partial_0 a(t))\vec{\beta},$$

Axion/ALPs – gluon coupling induces an oscillating electric dipole moment (oEDM):

$$d = d_{DC} + d_{AC} \cos(\omega_a t + \varphi_a).$$

Resonant build-up of vertical polarization, when $m_a c^2 \equiv \hbar \omega_a = \hbar \Omega_{MDM}$

у

♠

SCAN THE FREQUENCY FOR RESONANCE

Unknown frequency ω_a

• Scan the frequency for resonance

• Signal: Jump in vertical polarization, when $\omega_a = \Omega_{MDM}$

Unknown phase ϕ_a

- Use beams with perpendicular polarization: 4 bunches
- You cannot miss the signal.

RESULTS ON OSCILLATING EDM

- First proof-of-principle experiment was performed at COSY, FZ Jülich. [3]
- Polarized deuteron beam: 970 MeV/c
- Only a few days of data taking.
- 90% CL upper limit on the ALPs induced oscillating EDM.

BOUND ON AXION-NUCLEON COUPLING

- Limits on axion/ALP neutron coupling from the Particle Data Group 2023
- It includes the result from the JEDI collaboration

NEXT STEPS

STAGED APPROACH

Stage 1

• Precursor experiment

- magnetic ring
- proof-of-capability
- 1st dEDM & axion measurements

Stage 2

• Prototype ring

- electric/magnetic bends
- simultaneous clockwise (CW)
 proton magic momentum and CCW beams
- develop key technologies
- 1st proton EDM measurement

Stage 3

Dedicated storage ring

- pure electrostatic ring
- - (p = 701 MeV/c)

POSSIBLE FUTURE EXPERIMENTS AT GSI/FAIR

- existing accelerators at GSI/FAIR with polarized hadron beams
- letter of intend (LOI) has been submitted to G-PAC
- preliminary simulations suggest that 3 groups of sextupoles are required (see my poster)

SUMMARY

- Storage ring experiments offer new possibilities for searching EDM and Axions / ALPs.
- First measurements of static and oscillating deuteron EDM at COSY, FZ Jülich.
- Next step: Prototype EDM ring development.
- Experiments can be performed at GSI/FAIR or other storage rings, wherever polarized hadron beams available.

REFERENCES

- Senichev, Yu, et al. "Spin tune decoherence effects in electro-and magnetostatic structures." Proc. IPAC. 2013.
- Guidoboni, G., et al. "How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97-GeV/c Deuterons in a Storage Ring." Phys. Rev. Lett. 117 (2016): 054801.
- Karanth, S, et al. "First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam." Physical Review X 13 (2023): 031004.
- Stoehlker, T., et al. "Towards experiments with polarized beams and targets at the GSI/FAIR storage rings." 19th Workshop on Polarized Sources, Targets and Polarimetry (PSTP2022). 2023.

Thank you for your attention!

HOW TO EXPLORE A WIDER MASS RANGE

- $\Omega_{MDM} = \gamma G \Omega_{rev}$, a wide mass range can be covered by:
- 1) vary the beam energy (γ and Ω_{rev})
- 2) use different nuclei (G factor)
- 3) with additional electric field (frozen spin method)

$$\vec{\Omega}_{MDM} = -\frac{q}{m} \left[G\vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

PRECISION DETERMINATION OF SPIN TUNE

• Spin tune = number of spin precessions per turn.

 $v_s = \gamma G$

• Spin tune:

 $\sigma(\nu_s) \approx 10^{-10}$ in 100 s time interval. $\sigma(\nu_s) \approx 10^{-8}$ in 2 s time interval.

The preservation of the polarization is of crucial importance.

POLARIZATION FEEDBACK

- No frozen spin at COSY
 - \rightarrow phase-lock between spin-precession and RF device.

Achievement : error of phase-lock $\sigma_{\varphi} = 0.21$ rad

POSSIBLE FUTURE EXPERIMENTS AT GSI/FAIR

