Storage Rings for the Search of Charged Particles Electric Dipole Moments

C. Carli, P. Fierlinger, P. Lenisa, J. Pretz, F. Rathmann, E. Stephenson and H. Ströher

CERN (Switzerland), TUM München (Germany), Univ. of Ferrara and INFN (Italy), FZ-Jülich (Germany), RWTH Aachen (Germany), Indiana Univ. (USA)

Snowmass 2021, October 6th, 2020
COSY-SR at FZ-Jülich (Germany)

Recent achievements in polarization technology in storage rings

Pave the way to the design of a new class of storage rings for precision measurements
Motivation

Addressing the most intriguing puzzles of contemporary physics

- Preponderance of matter over antimatter
- Nature of Dark Matter

Approach

- Measur. of static Electric Dipole Moments (EDM) of fundamental particles.
- Search for axion-like particles (ALPs) as DM candidates through oscillating EDM

Presented LoI: EDMs of charged hadrons: p, d, 3He

Goal is to bring the limit for p to 10^{-29} e·cm
Requirements

High precision, primarily electric storage ring

- **Crucial role** of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: \(N = 4 \cdot 10^{10} \) per fill
- Polarized hadron beams: \(P = 0.8 \)
- Long spin coherence time: \(\tau = 1000 \) s
- Large electric fields: \(E \sim 10 \) MV/m
- Efficient polarimetry with:
 - large analyzing power: \(A = 0.6 \)
 - high efficiency detection: \(\text{eff.} = 0.005 \)

Expected statistical sensitivity in 1 year of data taking:

\[
\sigma_{\text{stat}} = \frac{\hbar}{\sqrt{N_f \tau \text{PAE}}} \Rightarrow \sigma_{\text{stat}} = 10^{-29} \text{e} \cdot \text{cm}
\]

Experimentalist’s goal: provide \(\sigma_{\text{syst}} \) to the same level.
Staged approach

On the basis of the preparedness of the required technological development

Stage 1
precursor experiment
at COSY (FZ Jülich)

Stage 2
prototype ring

Stage 3
dedicated storage ring

- magnetic storage ring
- electrostatic storage ring
- simultaneous \odot and \odot beams

now
5 years
10 years

$\sigma_{EDM}/(e \cdot cm)$
Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- S.R. to Search for EDMs of Charg. Part. - Feas. Study (arXiv:1912.07881)

100 m circumference

- \(p \) at 30 MeV all-electric CW-CCW beams operation
- Frozen spin operation including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage time
- CW-CCW operation
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling
Stage 3: precision EDM ring

500 m circumference (with $E = 8$ MV/m)

- All-electric deflection
- Magic momentum for protons ($p = 701$ MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)
Expectations

- Endorsement of scientific case and experimental approach
- Support in unification of international effort
Status preparedness levels for the full-scale all-electric ring.

<table>
<thead>
<tr>
<th>Operations</th>
<th>Rank</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin control feed-back</td>
<td>G</td>
<td>COSY R&D</td>
<td>App. A.1.3</td>
</tr>
<tr>
<td>spin coherence time</td>
<td>G(+)</td>
<td>COSY R&D</td>
<td>App. A.1.2</td>
</tr>
<tr>
<td>polarimetry</td>
<td>Y</td>
<td>polarimetry is destructive</td>
<td>Chap. 11</td>
</tr>
<tr>
<td>beam current limit</td>
<td>R</td>
<td>enough protons for EDM</td>
<td>Sect. 7.2</td>
</tr>
<tr>
<td>CW/CCW operation</td>
<td>R</td>
<td>systematic EDM error reduction</td>
<td>Ref. [1]</td>
</tr>
</tbody>
</table>

Theory

GR gravity effect	G(+)	this paper, standard candle bonus	App. D
frozen spin fixed point stable?	G	stable, this paper	App. G.5.5
intrabeam scattering	Y	may limit run duration	Ref. [3]
geometric/Berry phase theory	Y	needs further study	Ref. [4]

Components

quads	G	e.g. CSR design	Chap. 9
polarimeter	G	COSY R&D	Chap. 11
waveguide Wien filter	G	COSY R&D precursor	App. A.1.5
electric bends	R(+)	sparking/cost compromise	App. A.1.10

Physics & Engineering

cryogenic vacuum	Y	required?—cost issue only	Ref. [5]
stochastic cooling	Y(-)	ultraweak focusing issue	Ref. [6]
power supply stability	Y(-)	may prevent phase lock	Chap. 7
regenerative breakdown	R(+)	specific to mainly-electric, not seen in E-separators	

EDM systematics

polarimetry	G(-)	COSY R&D	Chap. 11
CW/CCW beam shape matching	Y	systematic error?	Chap. 10
beam sample extraction	Y		Chap. 11, App. K
control current resettability	Y		Ref. [7]
BPM precision	Y(-)	Rogowski? Squids?	Chap. 7, Chap. 10
element positioning & rigidity	Y(-)	must match light source stability	Ref. [8]
theoretical analysis			Chap. 10 and refs.
Radial B-field B_r	R	assumed to be dominant	Ref. [1]

Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study (arXiv:1912.07881 [hep-ex])