Storage Rings for the Search of Charged Particles Electric Dipole Moments

C. Carli, P. Fierlinger, <u>P. Lenisa</u>, J. Pretz, F. Rathmann, E. Stephenson and H. Ströher

CERN (Switzerland), TUM München (Germany), Univ. of Ferrara and INFN (Italy), FZ-Jülich (Germany), RWTH Aachen (Germany), Indiana Univ. (USA)

Snowmass 2021, October 6th, 2020

COSY-SR at FZ-Jülich (Germany)

Recent achievements in polarization technology in storage rings

- Long spin-coherence time [Phys. Rev. Lett. 117 (2016) 054801]
- Precise spin-tune measurement [Phys. Rev. Lett. 115 (2015) 094801]
- Spin-feedback system [Phys. Rev. Lett. 119 (2017) 014801]

Pave the way to the design of a new class of storage rings for precision measurements

Motivation

Addressing the most intriguing puzzles of contemporary physics

- Preponderance of matter over antimatter
- Nature of Dark Matter

Approach

- Measur. of static Electric Dipole Moments (EDM) of fundamental particles.
- Search for axion-like particles (ALPs) as DM candidates through oscillating EDM

- Presented Lol: EDMs of charged hadrons: p, d, 3He
- Goal is to bring the limit for p to 10⁻²⁹ e ⋅ cm

3/9

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from unwanted magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E ~ 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of data taking:

- $\sigma_{stat} = \frac{\hbar}{\sqrt{Nf_{\tau}PAF}} \Rightarrow \sigma_{stat} = 10^{-29} e \cdot cm$
- Experimentalist's goal: provide σ_{syst} to the same level.

Staged approach

On the basis of the preparedness of the required technological development

Stage 1

precursor experiment at COSY (FZ Jülich)

magnetic storage ring

now

Stage 2

prototype ring

- electrostatic storage ring
- simultaneous () and () beams

5 years

Stage 3

dedicated storage ring

magic momentum

(701 MeV/c) 10 years

 $\sigma_{\it EDM}/(\it e\cdot cm)$

5/9

 0^{-17} 10^{-18} 10^{-19} 10^{-20} 10^{-21} 10^{-22} 10^{-23} 10^{-24} 10^{-25} 10^{-26} 10^{-27} 10^{-28} 10^{-29}

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin operation including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage time
- CW-CCW operation
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)

Snowmass

Expectations

- Endorsement of scientific case and experimental approach
- Support in unification of international effort

Status preparedness levels for the full-scale all-electric ring.

Operations	Rank	Comment	Reference
spin control feed-back	G	COSY R&D	App. A.1.3
spin coherence time	G(-)	COSY R&D	App. A.1.2
polarimetry	Y	polarimetry is destructive	Chap. 11
beam current limit	R	enough protons for EDM	Sect. 7.2
CW/CCW operation	R	systematic EDM error reduction	Ref. [1]
Theory			
GR gravity effect	G(+)	this paper, standard candle bonus	App. D
frozen spin fixed point stable?	G	stable, this paper	App. G.5.5
intrabeam scattering	Y	may limit run duration	Ref. [3]
geometric/Berry phase theory	Y	needs further study	Ref. [4]
Components			
quads	G	e.g. CSR design	Chap. 9
polarimeter	G	COSY R&D	Chap. 11
waveguide Wien filter	G	COSY R&D precursor	App. A.1.5
electric bends	R(+)	sparking/cost compromise	App. A.1.10
Physics & Engineering			
cryogenic vacuum	Y	required?—cost issue only	Ref. [5]
stochastic cooling	Y	ultraweak focusing issue	Ref. [6]
power supply stability	Y(-)	may prevent phase lock	Chap. 7
regenerative breakdown	R(+)	specific to mainly-electric,	_
		not seen in E-separators	
EDM systematics			
polarimetry	G(-)	COSY R&D	Chap. 11
CW/CCW beam shape matching	Y		Chap. 10
beam sample extraction	Y	systematic error?	Chap. 11, App. K
control current resettability	Y		Ref. [7]
BPM precision	Y(-)	Rogowski? Squids?	Chap. 7, Chap. 10
element positioning & rigidity	Y(-)	must match light source stability	Ref. [8]
theoretical analysis			Chap. 10 and refs.
Radial B-field B_r	R	assumed to be dominant	Ref. [1]

Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study (arXiv:1912.07881 [hep-ex])