Electric dipole moments of the nucleon and light nuclei

Jülich-Bonn Collaboration (JBC)

J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi, A. Nogga, J. de Vries & A.W.

Schleching | February 20, 2014 | Andreas Wirzba

Matter Excess in the Universe

- **1** End of inflation: $n_B = n_{\bar{B}}$
- 2 Cosmic Microwave Bkgr.
 - SM(s) prediction:* $(n_B-n_{\bar{B}})/n_{\gamma}|_{CMB}\sim 10^{-18}$
 - WMAP+COBE (2012): n_B/n_γ|_{CMB}=(6.08±0.09)10⁻¹⁰

Sakaharov conditions ('67) for dyn. generation of net *B*:

- B violation to depart from initial B=0
- 2 C & CP violation to distinguish *B* and \overline{B} production rates
- 3 non-equilibrium to escape (B)=0 if CPT holds

 $^{(*)} 2J_{\rm Jarlskog}^{\rm CKM}(m_t^2 - m_u^2)(m_t^2 - m_c^2)(m_c^2 - m_u^2)(m_b^2 - m_d^2)(m_b^2 - m_s^2)(m_s^2 - m_d^2) \sim 10^{-18} M_{\rm EW}^{12}$

3 21

The Electric Dipole Moment (EDM)

EDM: d	$ = \sum_{i} \vec{r}_{i} e_{i} \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / \vec{S} $ (polar) (axial)
${\cal H}$	$= -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} - d \frac{\vec{s}}{\vec{s}} \cdot \vec{E}$
P: \mathcal{H}	$= -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} + d \frac{\vec{s}}{\vec{s}} \cdot \vec{E}$
T: \mathcal{H}	$= -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} + d \frac{\vec{s}}{\vec{s}} \cdot \vec{E}$

Any non-vanishing EDM of a non-deg. (subatomic) particle violates P & T

- Assuming CPT to hold, CP is violated as well
 → subatomic EDMs: "rear window" to CP violation in early universe
- Strongly suppressed in SM (CKM-matrix): $|d_n| \sim 10^{-31} e \text{ cm}$, $|d_e| \sim 10^{-38} e \text{ cm}$
- Current bounds: $|d_n| < 3 \cdot 10^{-26} e \text{ cm}, |d_p| < 8 \cdot 10^{-25} e \text{ cm}, |d_e| < 1 \cdot 10^{-28} e \text{ cm}$

n: Baker et al. (2006), p prediction: Dimitriev & Sen'kov (2003)*, e: Baron et al. (2013)[†]

* from $|d_{199}_{Hg}| < 3.1 \cdot 10^{-29} e \text{ cm}$ bound of Griffith et al. (2009) † from polar ThO: $|d_{ThO}| \lesssim 10^{-21} e \text{ cm}$ Andreas Wirzba

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_\rho} \sim 10^{-14} e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot F_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2}),$

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(\mathcal{K}_{L}^{0} \rightarrow \pi^{+}\pi^{-})| / |\mathcal{A}(\mathcal{K}_{S}^{0} \rightarrow \pi^{+}\pi^{-})| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $|d_N| \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $G_F F_{\pi}^2$ factor to undo flavor change

$$\Rightarrow \left| \left| d_N^{\text{SM}} \right| \sim 10^{-7} \times 10^{-24} e \,\text{cm} \sim 10^{-31} e \,\text{cm} \right|$$

 \hookrightarrow The empirical window for search of physics BSM(θ =0) is

 $10^{-24}e\,\mathrm{cm} > |d_N| > 10^{-30}e\,\mathrm{cm}.$

Chronology of upper bounds on the neutron EDM

Smith, Purcell, Ramsey (1957) Baker et al. (2006)

 \hookrightarrow 5 to 6 orders above SM predictions which are out of reach !

Chronology of upper bounds on the neutron EDM

Smith, Purcell, Ramsey (1957) Baker et al. (2006)

ightarrow 5 to 6 orders above SM predictions which are out of reach !

Search for EDMs of charged particles in storage rings

General idea:

Initially longitudinally polarized particles interact with radial \vec{E} field \Rightarrow build-up of vertical polarization (measured with a polarimeter)

Proposed storage ring experiments (~ $10^{-29}e$ cm):

- Counter-circling proton ring at Brookhaven (srEDM) or Fermilab (Project X)?
- All-purpose ring for proton, deuteron (and helion) in Jülich (JEDI)?
- \Rightarrow Precursor experiment ($\gtrsim 10^{-25} e \text{ cm}$) for *p* or *D* at COSY@Jülich !

Road map from EDM Measurements to EDM Sources

Experimentalist's point of view \rightarrow

← Theorist's point of view

, p^\prime

CP-conserving and -violating form factors and EDMs

, p

CP-conserving and -violating form factors and EDMs

EDM sources: QCD θ -term of the SM

~

QCD has topologically non-trivial vacuum $\rightarrow \mathcal{P} \& \mathcal{T}$ term in \mathcal{L}_{QCD} :

$$\mathcal{L} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_{S}^{2}}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} G_{\mu\nu}^{a} G_{\rho\sigma}^{a}$$

(of dimension 4)

$$\dots + \theta \frac{g_S^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \xrightarrow{U_A(1)} \dots - \bar{\theta} m_q^* \sum_{f=u,d} \bar{q}_f i \gamma_5 q_f$$

with $\overline{\theta} = \theta + \arg \operatorname{Det} \mathcal{M}$, \mathcal{M} : quark mass matrix, $m_q^* \equiv \frac{m_u m_d}{m_u + m_d}$

$$\begin{aligned} d_n^{\bar{\theta}} &\sim \bar{\theta} \cdot \frac{m_q^*}{m_s} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} & \text{with } \bar{\theta} \stackrel{\text{NDA}}{\sim} \mathcal{O}(1). \\ \left| d_n^{emp} \right| &< 2.9 \cdot 10^{-26} e \,\mathrm{cm} \rightsquigarrow \left| \bar{\theta} \right| \lesssim 10^{-10} & \text{strong CP problem} \\ & \text{Note: } \mathcal{P} \cdot \mathcal{F} |_{emp} \stackrel{CPT}{:=} \mathcal{P} \cdot \mathcal{O} \mathcal{P} |_{emp} \sim 10^{-10} (??) \end{aligned}$$

More sources: <u>New Physics (Beyond the Standard Model)</u> SUSY, multi-Higgs, Left-Right-Symmetric models, ... Evaluated in Effective Field Theory (EFT) approach:

All degrees of freedom beyond NP (EW) scale are integrated out:

 \rightarrow Only SM degrees of freedom remain: $q, g, (H, W^{\pm}, ...)$

- Write down all interactions for these active degrees of freedom that respect the SM + Lorentz symmetries: here dim. 6 or higher order
- Need a *power-counting scheme* to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

All possible (BSM) 7 and P contact interactions

of dimension 6 above/below the EW scale and their CP hadronic equivalents

W. Dekens & J. de Vries (2013)

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

Symmetries (esp. chiral one) and Goldstone Theorem Low-Energy Effective Field Theory with External Sources *i.e.* Chiral Perturbation Theory (suitably extended)

Andreas Wirzba

 \rightarrow

θ-Term on the Hadronic Level (non-perturbative QCD regime!)

 $\mathcal{L}^{\theta}_{QCD} = -\bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f: \quad \mathcal{P}, \mathbf{I} \quad \Leftrightarrow \quad \mathcal{M} \to \mathcal{M} + \bar{\theta} m_q^* i \gamma_5 \qquad m_q^* = \frac{m_u m_d}{m_u + m_d}$ $\hookrightarrow \bar{\theta}$ source breaks chiral symmetry ($\propto m_q^*$) but *conserves* the isospin one:

θ-Term Induced EDM of a Single Nucleon

We'll always have ... the lattice

Don't mention the ... light nuclei

Andreas Wirzba

15|21

We'll always have ... the lattice

However, It's a long way to Tipperary ...

Results from full QCD calculations (no systematical errors!) for the

 $\theta \equiv 1!$ (adapted from Eigo Shintani (Mainz), *Lattice calculation of nucleon EDM*, Hirschegg, Jan. 14, 2014)

Don't mention the ... light nuclei

We'll always have ... the lattice

However, It's a long way to Tipperary ...

Results from full QCD calculations (no systematical errors!) for the

(adapted from Taku Izubuchi (BNL), Lattice-QCD calculations for EDMs, Fermilab, Feb. 14, 2013)

Don't mention the ... light nuclei

Single Nucleon Versus Nuclear EDM of the θ -Term

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

Single Nucleon Versus Nuclear EDM of the θ -Term

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

EDM of the Deuteron at LO: CP-violating π exchange

Reference	potential	result [$g_1 g_{\pi NN} e$ fm]
Liu & Timmermans (2004)	Av ₁₈	1.43×10^{-2}
Afnan & Gibson (2010)	Reid 93	1.53×10^{-2}
Song et al. (2013)	A <i>v</i> 18	1.45×10^{-2}
JBC (2014)*	A <i>v</i> ₁₈	1.45×10^{-2}
Bsaisou et al. (2013) [◊]	CD Bonn	1.52×10^{-2}
JBC (2014)*	ChPT (<i>N²LO</i>)	$(1.43 \pm 0.13) \times 10^{-2}$

* unpublished, * Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306]

BSM \mathcal{CP} sources: $|g_1 \pi NN|$ vertex is of LO in qCEDM and 4qLR case

³*He* EDM: results for CP-violating π exchange

 $g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ (CP, I) $g_1 N^{\dagger} \pi_3 N$ (CP, I) LO: *θ*-term, gCEDM LO: gCEDM, 4gLR N²LO: 4qLR

NLO: θ term

Reference	potential	result [$g_0 g_{\pi NN} e$ fm]	result [$g_1 g_{\pi NN} e$ fm]
Stetcu et al.(2008)	Av ₁₈ UIX	1.20 × 10 ⁻² /2 [♦]	2.20 × 10 ⁻² /2 [♦]
Song et al.(2013)	Av ₁₈ UIX	0.55×10^{-2}	1.06×10^{-2}
JBC (2014) [♦]	Av ₁₈ UIX	0.57×10^{-2}	1.11 × 10 ⁻²
JBC (2014) [◊]	CD BONN TM	0.68×10^{-2}	1.14×10^{-2}
JBC (2014) [◊]	ChPT (<i>N²LO</i>)	$(0.86 \pm 0.11) \times 10^{-2}$	$(1.11 \pm 0.14) \times 10^{-2}$

* unpublished

Results for ${}^{3}H(g_{i}) \approx (-1)^{1+i} \times {}^{3}He(g_{i})$ ones

Testing Strategies in the θ EDM scenario

EDM results (with $\tilde{d}_n = 0.88d_n - 0.047d_p$ (de Vries et al. (2011)) $d_D = d_n + d_p + (0.54 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$ (Bsaisou et al. (2013)) $d_{3He} = \tilde{d}_n - (1.35 \pm 0.88) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$ (JBC (2014))

Uncertainties dominated by the *hadronic* ones:

 $g_0^{\theta} = \frac{(m_n - m_p)^{\text{strong}}(1 - \epsilon^2)}{4F_{\pi}\epsilon} \bar{\theta} \quad \text{and} \quad \frac{g_1^{\theta}}{g_0^{\theta}} \approx \frac{8c_1(M_{\pi^{\pm}}^2 - M_{\pi^0}^2)^{\text{strong}}}{(m_n - m_p)^{\text{strong}}} \quad \text{with} \quad \epsilon = \frac{m_u - m_d}{m_u + m_d}$ **Testing strategies:**

- plan A: measure d_n , d_p , and $d_D \xrightarrow{d_D(2N)} \bar{\theta} \xrightarrow{\text{test}} d_{^3He}$
- plan A': measure d_n , (d_p) , and $d_{^3He} \xrightarrow{d_{^3He}(2N)} \bar{\theta} \xrightarrow{\text{test}} d_D$
- plan B: measure d_n (or d_p) + Lattice QCD $\rightsquigarrow \bar{\theta} \xrightarrow{\text{test}} d_D$

■ plan B': measure d_n (or d_p) + Lattice QCD $\rightsquigarrow \bar{\theta} \xrightarrow{\text{test}} d_p$ (or d_n) Andreas Wirzba

here: only absolute values considered

here: only absolute values considered

Conclusions

- The first non-vanishing EDM might be detected in a charge-neutral case: neutrons or dia-/ paramagnetic atoms or molecules …
- However, measurements of light ion EDMs will play a key role in disentangling the sources of QP
- EDM measurements are characteristically of *low-energy nature:*
 non-leptonic predictions have to be in the *language of hadrons*
 - → only reliable methods: ChPT/EFT and Lattice QCD
 because of their inherent & systematical uncertainty estimates
- EDMs of light nuclei provide independent information to nucleon ones and may be even larger and, moreover, even simpler
- Deuteron & helion work as independent isospin filters of EDMs

At least the EDMs of *p*, *n*, *d*, and ³He are needed to have a realistic chance to disentangle the underlying physics

Many thanks to my colleagues

in Jülich: Jan Bsaisou, Christoph Hanhart, Susanna Liebig, Ulf-G. Meißner, David Minossi, Andreas Nogga, and Jordy de Vries

in Bonn: Feng-Kun Guo, Bastian Kubis, Ulf-G. Meißner

- and: Werner Bernreuther, Bira van Kolck, and Kolya Nikolaev
- J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, A. Nogga and A. Wirzba, *The electric dipole moment of the deuteron from the QCD θ-term,* Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306 [hep-ph]].
- K. Ottnad, B. Kubis, U.-G. Meißner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981 [hep-ph]].
- F.-K. Guo and U.-G. Meißner, Baryon electric dipole moments from strong CP violation, JHEP 1212 (2012) 097 [arXiv:1210.5887 [hep-ph]].
- W. Dekens and J. de Vries, *Renormalization Group Running of Dimension-Six Sources ...,* JHEP **1305** (2013) 149 [arXiv:1303.3156 [hep-ph]].
- J. de Vries, R. Higa, C.-P. Liu, E. Mereghetti, I. Stetcu, R. Timmermans, U. van Kolck, *Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory*, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604 [hep-ph]].