Simulations of Beam Dynamics and Beam Lifetime for the Prototype EDM Ring

Member of the Helmholtz Association

22-03-2023 | Saad Siddique

INTRODUCTION

Search for \mathcal{CP} violation beyond the Standard Model

* Cosmological Models

Electric Dipole Moment (EDM)

- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

$$H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$
$$P : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$
$$T : H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

Electric Dipole Moment (EDM)

- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

Stage 1

Stage 3

Precursor experiment at COSY FZ Jülich

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement's precision

Prototype proton storage ring

- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

Stage 1

Precursor experiment at COSY at FZ Jülicl

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring wil

- Decrease the systematic errors
- Increase EDM measurement`s precision

Stage 2

Prototype proton storage ring

- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

Stage 3

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

Prototype EDM Storage Ring

Goals:

- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously Beam life time > 1000 s
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

Prototype EDM Storage Ring

Goals:

Frozen spin capability

my TASK

- Storage of high intensity CW and CCW beams simultaneously Beam life time > 1000 s
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

Ring Design and Parameters

Basic layout

- Fourfold symmetric squared ring
- Circumference ≈ 123 m
- Three families of quadrupoles will be used
 - i. Focusing QF
 - ii. Defocusing QD
 - iii. Straight section QSS
- Ring will be operated in two modes
 - i. With all electric bendings (at T=30 MeV)
 - ii. With electric and magnetic bendings (at T=45 MeV)

Simulation Results

- Lattice Optics
- Estimations of Beam Losses

Lattice Optics :

MADX (Methodical Accelerator Design)

One cell = QSS-d-QF-d-EB-d-QD-d-EB-d-QF-d-QSS

Lattice type	$oldsymbol{eta}_{y-max}$ (m)	$\boldsymbol{Q}_{\boldsymbol{X}}$	Q_y
Strong	33	1.754	1.227
Medium	100	1.835	1.748
Weak	200	1.796	1.881
Weaker	300	1.770	1.923

Lattice Fle	exibility :
Betatron tunes	Betatron functions
$0.2 \leq Q_x \leq 2.5$	$m{eta}_x \leq 20 \; m$
$0.1 \leq Q_y \leq 2.5$	$m{eta}_y \leq 400 \ m$

Lattice Generation:

Estimation of Beam Losses

Four main effects of beam losses

- 1. Hadronic Interactions
- 2. Coulomb Scattering
- 3. Energy Loss Straggling
- 4. Intra Beam Scattering

i. <u>Residual Gas</u>

- Gases are $H_2 : N_2$ with 80:20
- $\sigma_{tot} = 204 \text{ mb}$
- Nitrogen equivalent pressure $P_{eq} = 3.7 \times 10^{-11} mbar$
- $n_{rg} = 5.30 \times 10^5 \ atoms/cm^3$
- $f_0 = 0.596 \text{MHz}$

Two different scenarios

- . With Residual Gas
- II. With Residual Gas + Target

ii. <u>Target</u>

• Carbon target with thickness $n_t \sim 2 \times 10^{12}$ atoms /cm²

Calculations for four lattices are performed in each case

1. Hadronic interaction

$$\tau^{-1} = n\sigma_{tot}f_0$$

 $\tau_{loss} = beam \ loss \ rate$ $n = target \ thickness \ or \ rest \ gas \ density$ $\sigma_{tot} = total \ cross \ section$ $f_0 = revolution \ frequency$

i. <u>Residual gas</u>

ii. <u>Target</u>

$$\tau^{-1} = 3.51 \times 10^{-9} \, s^{-1}$$
 < $\tau^{-1} = 2.14 \times 10^{-6} \, s^{-1}$

As there is no dependency on optical functions this effect remains the same for all lattices

2. Coulomb Scattering

$$\tau^{-1} = n\sigma_{tot}f_0$$

Where :
$$\sigma_{tot} \propto \frac{1}{\gamma\beta\theta}$$

and

A=Transverse acceptance > 10 mm mrad β_{\perp} = Transverse betatron amplitude

3. Energy Loss Straggling

P=relative beam loss probability per turn

Probability depends on maximum energy loss (ϵ_{max}) and longitudinal acceptance (δ_{max})

4. IntraBeam Scattering (IBS)

$$\tau_{loss}^{-1} = \frac{D_{\parallel}^{IBS}}{L_c \delta_{acc}^2}$$
$$D_{\parallel}^{IBS} = \frac{N}{(\gamma_L \beta_L) \epsilon^{3/2} \sqrt{\beta_{\perp}}}$$

 $D_{\parallel}^{IBS} = longitudinal diffusion coefficient$ $\epsilon = emittance of beam = 10 mm mrad$ $\beta_{\perp} = average beta function$ $L_c = coulomb logarithm$ $N=10^9 particles$ $\gamma_L \beta_L = beam momentum$

Total Beam loss rate

With Analytical Formulas

III. Physikalisches

Lattice Type (β_{y-max})	HI (10 ⁻⁶ s ⁻¹)	SCS (10 ⁻⁴ s ⁻¹)	$(10^{-4}s^{-1})$	Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
33m		7.65	2.34	9.47	1055
100m	2 1 7	27.3	2.10	27.5	363
200m	2.17	94.6	1.99	90.0	111
300m		208	1.90	195	51

GSI Helmholtzzentrun

JEDI

 $\left(\frac{1}{\tau}\right)_{Total} = \left(\frac{1}{\tau}\right)_{HI} + \left(\frac{1}{\tau}\right)_{SCS} + \left(\frac{1}{\tau}\right)_{ES} + \left(\frac{1}{\tau}\right)_{IBS}$

BetaCool For Beam Dynamics:

"BETACOOL program is to simulate long term processes (in comparison with the ion revolution period) leading to variation of the ion distribution function in 6 dimensional phase space."

Image: Second Science of Content of	Image: Structure Image: Structure Image: Structure File Image: Structure File Image: Structure File Image: Structure File <td< th=""><th>Developed by : I.Meshkov, A.Sidorin, A.Smirnov, G.Trubnikov, R.Pivin Joint Institute for Nuclear Research Joliot Curie, 6, Dubna, 141980 Russian Federation</th></td<>	Developed by : I.Meshkov, A.Sidorin, A.Smirnov, G.Trubnikov, R.Pivin Joint Institute for Nuclear Research Joliot Curie, 6, Dubna, 141980 Russian Federation
Mates Construction Mates step multiplier Rates Evolution Horizont Vertical Long 3D 0 • Electron Cooling Horizontal 0.001779717472 [1/set 1 • Internal Target Vertical 0.001800058126 [1/set 0 • Collision Point Longitudinal 5.328189222E-5 [1/set 1 • Particle Losses Particle number -7.156607037E-5 [1/set 0 • Additional Heating Calculate Find betacool.exe Oper	Ate Input MAD filename Find PTR.mad Open Modify Lattice Structure No Changes Input MAD filename Input MAD filename c] Reduce filename Find none Open c] Extended step [cm] 10 Input MAD file c] Calculate Lattice Make output MAD file Input MAD file Find betacool.exe Open Find mad8win.bat Open	Dx Dx Dx Effects Intrabeam Scattering X IBS model Martini Longitudinal slices Transverse coupling 1 [01] Dx High energy assumption (HEA) V HEA with No dispersion Coulomb logarithm 20
0 Stochastic Cooling 0 Gated Stoch. Cooling 0 Laser Cooling Image: State Stoch. Cooling Image: State Stoch. Cooling 0 Laser Cooling Image: State Stoch. Cooling Image: State Stoch. Cooling Image: State Stoch. Cooling Image: Stochastic State Stoch. Cooling Image: Stochastic State Stoch. Cooling Image: Stochastic S	Ring Parameters Ring Parameters - on kind Lattice Mean params RF system Reference point Reference Energy Gamma 0.24785 0.24785 0.24785 0.23831 (Kinetic 30 MeV Momentum 0.23831 (GeV/c) Atomic mass 1 A Charge number 1 IE15 (sec)	Ame Momentum Bunch Number Luminosity Beam-beam 3D Diagram 0.001095 0.001095 0.001095 0.001095 0.001095 0.001095 0.001095 Max Task RM · · · · · · · · · · · · · · · · ·

Comparison b/w Beam loss calculations

Analytical Formulas

	Lattice Type (β _{y-max})	Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
	33m	9.47	1055
	100m	27.5	363
	200m	90.0	111
	300m	195	51
Vi	th Betaco	ol	
Vi	th Betaco Lattice Type (β_{y-max})	ol Total loss rate $(10^{-4}s^{-1})$	Beam Lifetime (s)
Vi	th Betaco Lattice Type (β_{y-max}) 33m	ol Total loss rate $(10^{-4}s^{-1})$ 9.197	Beam Lifetime (s) 1087
Vi	th Betaco Lattice Type (β_{y-max}) 33m 100m	ol Total loss rate $(10^{-4}s^{-1})$ 9.197 2.62	Beam Lifetime (s) 1087 382
Vi	th Betaco Lattice Type (β _y -max) 33m 100m 200m	ol Total loss rate $(10^{-4}s^{-1})$ 9.197 2.62 8.60	Beam Lifetime (s) 1087 382 116

Analytical formulas and BetaCool results showing an agreement.

HI (Hadronic Interactions), SCS (Single Coulomb Scatterings), IBS (Intera-Beam Scatterings) Martin Model

Conclusion

Summary:

- Preliminary design of prototype EDM ring with pure electrostatic bendings.
- Most dominating effect is Single Coulomb Scatterings
- Lattice with $\beta_{y-max} \leq 100 m$ is preferable for longer beam lifetime.

Outlook:

- Beam-target simulations are also in progress.
- Further investigations on beam and spin dynamics.
- Conceptual studies of PTR design is under consideration.

Thank you

