Electric	Dipole	Moments	

EDM Search in Storage Rings

Feasbility studies at COSY

Search for electric dipole moments in storage rings JEDI Collaboration at FZ-Jülich

Paolo Lenisa

University of Ferrara and INFN, Italy

STORI'17, Nov. 17th 2017, Kanazawa, Japan

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Introduction

Electric Dipole Moments (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible only via violation of time-reversal (T) and parity (P) symmetries
- Nothing to do with electric dipole moments observed in some molecules (e.g. H₂O molecule)

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions 00
Symmetry violations	ion of EDM			

$$H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d\frac{\vec{s}}{s} \cdot \vec{E}$$

• T: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$
• P: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$

EDMs test violation of P and T symmetries ($\stackrel{CPT}{=}$ CP)

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Symmetry violations

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

• Excess of Matter in the Universe:

	observed	SCM prediction
$\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sacharov (1967): CP violation needed for baryogenesis

- ⇒ New CP violating sources beyond SM needed to explain the discrepancy
- Could show up in EDMs of elementary particles

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Symmetry violations				
CP-violation &	2 EDMs			

	Standard Model
Weak interaction	
CKM matrix	ightarrow unobservably small EDMs
Strong interaction	
θ_{QCD}	\rightarrow best limit from neutron EDM
be	yond Standard Model
e.g. SUSY	\rightarrow accessible by EDM measurements

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Limits				

Why Charged Particle EDMs?

- No direct measurement for charged particle exist
- Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
- complementary to neutron EDM:

 $d_d, d_p, d_n \Rightarrow \text{access to } \theta_{QCD}$

EDM of one particle not sufficient to identify CP-violating source

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Limits				

Sources of CP Violation

J. de Vries

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Concept and requirements

Search for EDM in storage rings: concept

Procedure

- Inject particles in storage ring
- 2 Align spin along momentum (\rightarrow *freeze* horiz. spin-precession)
- Search for time development of vertical polarization

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Concept and requirements

Search for EDM in storage rings: concept

Procedure

- Inject particles in storage ring
- 2 Align spin along momentum (\rightarrow *freeze* horiz. spin-precession)
- Search for time development of vertical polarization

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Concept and requirements				
Requirements				

Experiment

- High precision storage ring → systematics (alignment, stability, field homogeneity)
- High intensity beams (N=4 · 10¹⁰ per fill)
- Polarized hodron beams (P=0.8)
- Long spin coherence time ($\tau = 1000 \text{ s}$)
- Large electric fields (E = 10 MeV/m)
- Polarimetry (analyzing power A = 0.6, eff. = 0.005)

Statistics

$$\sigma_{stat} = \frac{\hbar}{\sqrt{Nt_{\tau}PAF}} \Rightarrow \sigma_{stat}(1year) = 10^{-29}e \cdot cm$$

challenge: get σ_{sys} to the same level

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Concept and requirements				

Systematics

Example: radial B field (*B_r***)**

- B_r can mimic EDM (if $dE_r \approx \mu B_r$)
- E.g. $d = 10^{-29}$ e \cdot cm, $E_r = 10$ MV/m
 - Corresponds to $B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$

Solution

- Use of two beams running clockwise and counterclockwise
- Separation of the two beams sensitive to B_r

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

The COSY storage ring

The COSY storage ring at FZ Jülich

Polarized protons and deuterons with p=0.3-3.7 GeV/c \Rightarrow ideal starting point for charged particles EDM studies

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY ●●○○○○○○	Precursor experiment	Conclusions
Experiment				
Experiment p	reparation			

- **①** Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on target
- Measure asymmetry and determine spin precession

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Experiment				
Polarimeter				

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$
- Left/Right asymmetry \propto vertical polarization \rightarrow d

 $N_{up,down} \propto 1 \pm P_{hor} Asen(\nu_s \omega_{rev} t), f_{rev} \approx 750 \text{ kHz}$

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Experiment

Polarization flip and spin-coherence time

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Achievements

Spin-coherence time (SCT): developments

Short SCT

- Unbunched beam:
 - $\Delta p/p = 10^{-5}$
 - ⇒ decoherence after < 1s
- Bunched beam:
 - No 1st order effects in $\Delta p/p$
 - \Rightarrow SCT = 20 s

Long SCT

- Use of of 6-poles
 - Compensate for β oscillations

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Achievements				

Spin-coherence time: results (τ_{SCT} > 1000 s)

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Achievements				

Spin-tune: definition

deuterons: $p_d = 1 \text{ GeV/c} (\gamma = 1.13), \text{ G} = -0.14256177$ $\Rightarrow \nu_s = \gamma G \approx -0.161$

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY ○○○○○○●○○	Precursor experiment	Conclusions
Achievements				
Spin-tune: re	sults			

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Achievements				

Controlling 120kHz precession

"Spin-feedback" system

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY ○○○○○○○○●	Precursor experiment	Conclusions
Achievements				
References				

0	Spin coherence time: τ_{SCT} > 1000 s
	• PRL 117, 054801 (2016)
2	Spin tune: $\bar{\nu_s} = -0.16097 \pm 10^{-10}$ in 100 s
	• PRL 115, 094801 (2015)
3	Spin-feedback: polarization vector kept within 12 degrees
	PRI 119 014801 (2017)

- 1.⇒ mandatory to reach statistical sensitivity
- 2. & 3. ⇒ highly accurate measurement and manipulation of polarization vector

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

Concept

Proof of principle experiment using COSY

Highest sensitivity \rightarrow new type of machine

- Electrostatic circular storage ring:
 - centripetal force produced primarly by electric fields.
 - *E* couples to EDM providing sensitivity (< 10⁻²⁹ e cm).
 - B means evil (μ large).

Proof-of-principle with novel RF Wien filter ($\vec{E} \times \vec{B}$)

- Magnetic machine: spins precess around stable spin axis (~ direction of B-fields in dipole magnets).
- RF device at harmonic of spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - \Rightarrow Accumlate EDM effect vs time in cycle (\sim 1000 s).

Goal of proof-of-principle experiment:

Show that SR can be used for a first direct EDM measurement.

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
RF-Wien filter				
RF Wien filter				

A couple of remarks about the technique

RF Wien filter avoids coherent betatron oscill. in the beam:
Lorentz force *F*_L = q(*E* + *v* × *B*) ≃ 0.
EDM meas. mode *B* = (0, *B*_v, 0) and *E* = (*E*_x, 0, 0).

- deut. spin in the machine plane
- d ≠ 0 → accumulation of vertical polarization P_y in τ_{SCT} ~ 1000 s

Statistical sensitivity

- In the range 10^{-23} to 10^{-24} e cm for deut. possible.
- Systematic effects: Alignment, magnetic imperfections of RF-Wien filter etc.,

Electric Dipole	Moments	
000000		

EDM Search in Storage Rings

Feasbility studies at COSY

Precursor experiment

Conclusions

RF-Wien filter

$P_y(t)$ buildup using RF Wien filter for deuterons

Model calculation at beam momentum p_d = 970 MeV/c

- G=-0.143, γ = 1.126, $f_s = |f_{rev}(\gamma G + K_{(=0)})|$ = 120.765 kHz
- Length of device: L_{WF}=1.55 m
- Assumed deuteron EDM: d=10⁻²⁰ e cm
- Electric RF field: $1000 \times E_{RF} = 2.145 \times 10^6 \text{ MV/m}$

EDM effect accumulates in $P_{\gamma} \propto d$

Electric	Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
RF-Wie	en filter				
Wav	eguide Rl	F Wien filter			
	DeveloInstall	oped at FZJ in colla ed in the PAX low-,	aboration with RV β section at COS	VTH-Aachen Y	

Aim: build the best possible device with respect to electromagnetic performance and mechanical tolerances

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
RF-Wien filter				

Lorentz force compensation

Integral Lorentz force of the order of - 3 eV/m

- Electric, magnetic and Lorentz forces in the WF
- Trapezoid electrodes determine crossing of E and B fields

Lorentz force: $F_L = q(\vec{E} + \vec{v} \times \vec{B})$

- $\vec{v} = c(0,0,\beta), \vec{E} = (E_x, E_y, E_z), \vec{B} = \mu_0(H_x, H_y, H_z)$
- $F_L = 0 \rightarrow E_x = -c \cdot \beta \cdot \mu_0 \cdot H_y \Rightarrow Z_q = \frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173\Omega$

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions
Commissioning				

First commissioning run (June 2017)

Wien-filter control system

• Feedback loop(s) implementation and test

Operation at 2.2 kW, E field vertical

- $\bullet~3\times10^8$ protons in fill after acceleration and beam cooling
- E and B fields in phase & Z_q matched to $\beta \Rightarrow$ no beam loss

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions ●○
Conclusions and Outlook				
Conclusions	and Outlook			

- EDMs \rightarrow probes of CP-violating interactions
- Charged particle EDMs \rightarrow new class of high-precision S.R.
- Feasibility studies ongoing at COSY
 - Important achievements already accomplished
 - First measurement of deuteron EDM in preparation
 - First results expected end 2018
- Project acknowledged with ERC-AdG "srEDM"
- Study group established at CERN:
 - Feasibility study of a (pure electrostatic) EDM proton ring

Electric Dipole Moments	EDM Search in Storage Rings	Feasbility studies at COSY	Precursor experiment	Conclusions o●
Conclusions and Outlook				
Thank you!				

