

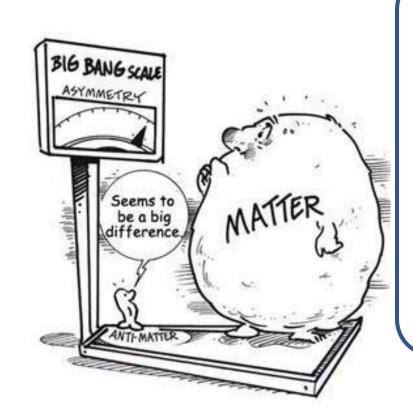
SIMULATIONS OF BEAM DYNAMICS AND BEAM LIFETIME FOR THE PROTOTYPE EDM RING

18.10.2021

Saad Siddique & Prof. Dr. Andreas Lehrach

<u>OUTLINE</u>

- 1) Introduction
- 2) EDM Measurement using Storage Ring
- 3) Prototype EDM Storage Ring
- 4) Simulation Results
- 5) Conclusion



INTRODUCTION

Big Bang

Equal amount of matter & antimatter

Early Universe

Preference of matter

Sakharov criteria (1967): [2]

- Baryon number violation
- No thermic equilibrium
- \mathcal{C} , \mathcal{CP} violation

Today

Matter

Baryon Asymmetry

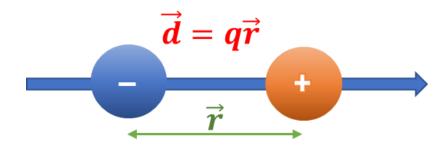
 $=\frac{N_B-N_{\overline{B}}}{N_{\gamma}}$

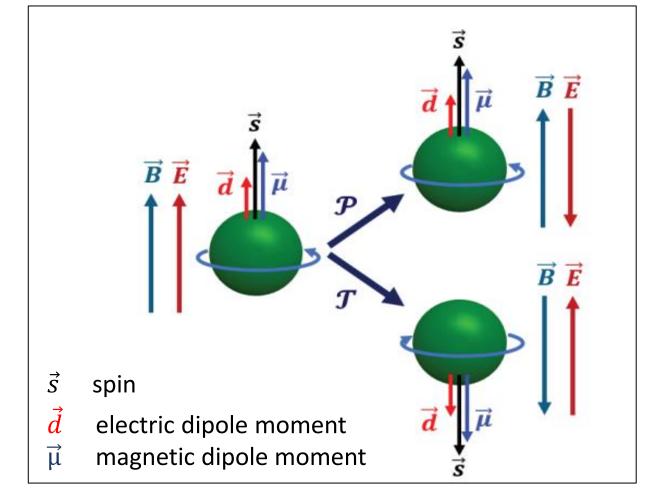
Observed value * $\approx 10^{-10}$

Expected value $\approx 10^{-18}$

Search for \mathcal{CP} violation beyond the Standard Model

* Cosmological Models





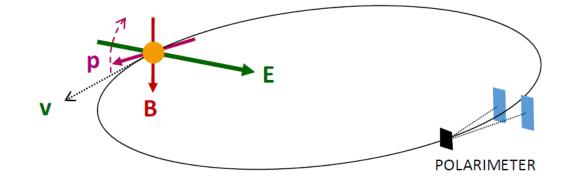
Electric Dipole Moment (EDM)

- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

$$H = H_M + H_E = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

$$P: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

$$T: H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$



EDM MEASUREMENT USING STORAGE RING

Basic Principle

- 1) Inject longitudinally polarized beam in storage ring
- 2) Radial electric field interacting with EDM (torque)
- 3) Observe vertical polarization with time

Spin motion: **Thomas-BMT-Equation**

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S} = (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) \times \vec{S}$$

$$\vec{\Omega} = \frac{q}{m} \left\{ G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left\{ \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right\} \right\}$$

Frozen Spin
$$\overrightarrow{B} = 0$$
 $\left(G - \frac{1}{\gamma^2 - 1}\right) \equiv 0!$

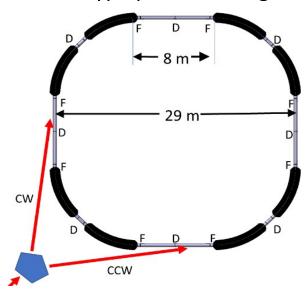
If $G > 0 \rightarrow$ pure electric ring
If $G < 0 \rightarrow$ combination of E-B

Magic momentum

EDM MEASUREMENT USING STORAGE RING

Stage 1

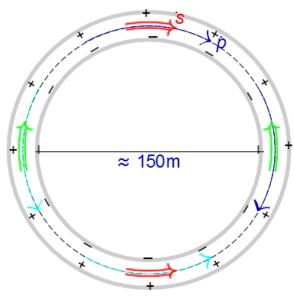
Precursor experiment at COSY at FZ Jülich


- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement's precision

Stage 2


Prototype proton storage ring

- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

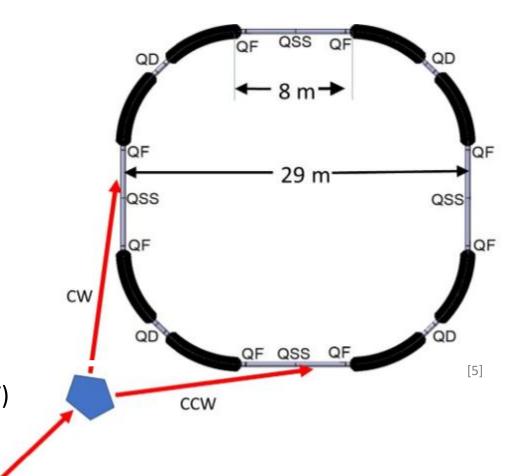
Stage 3

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum(701MeV/c)

Goals:

- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

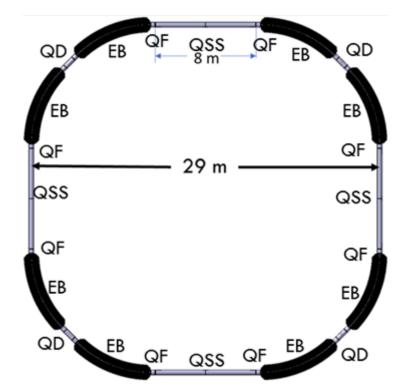


Basic layout

- Fourfold symmetric squared ring
- Circumference ≈ 100 m
- Each straight section is 8m long
- Three families of quadrupoles will be used
 - Focusing QF
 - **Defocusing QD**
 - Straight section QSS
- Ring will be operated in two modes
 - With all electric bendings (at T=30 MeV)
 - With electric and magnetic bendings (at T=45 MeV) ii.

SIMULATION RESULTS

- Lattice Optics
- > Estimations of Beam Losses



LATTICES

- MADX (Methodical Accelerator Design) [6]
- 1st Stage of PTR is studied (*i.e T=30 MeV of protons*)

One cell = QSS-d-QF-d-EB-d-QD-d-EB-d-QF-d-QSS

- Four different lattices studied
 - 1. Strong focusing
 - 2. Medium focusing
 - 3. Weak focusing
 - 4. Weaker focusing

QSS = straigh-section

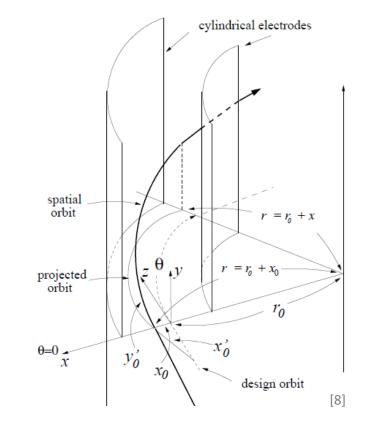
Quadrupole

d = drift section

QF = focusing quadrupole

QD = defocusing quadrupole

EB = electrostatic bending

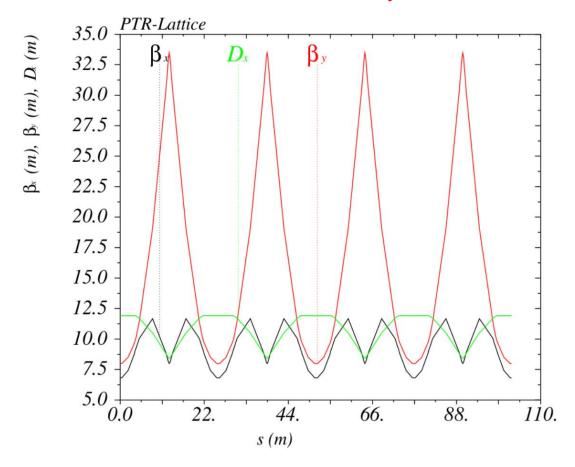

TRANSFER MATRIX FOR ELECTROSTATIC DEFLECTOR

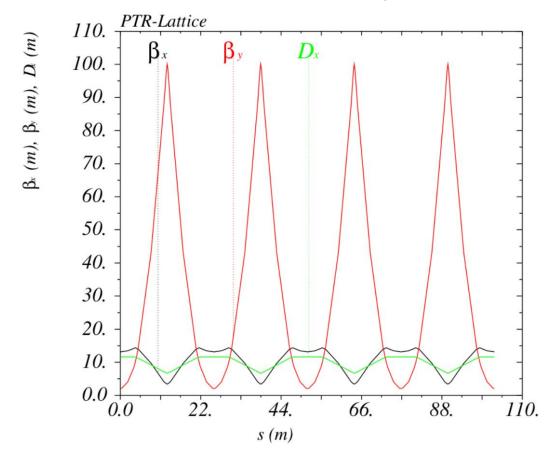
For pure electrostatic deflectors

- Transfer matrices derived from Hamiltonian (a brilliant work done by Rick Bartmaan) [7]
- For non-relativistic and the cylindrical electrodes

with
$$\xi = \sqrt{2}$$
 and $\eta = 0$ $\xi = \text{horizontal focusing strength}$ $\eta = \text{vertical focusing strength}$

$$\mathsf{EB} = \begin{bmatrix} 0.85418 & 3.30871 & 0 & 0 & 0 & 1.29205 \\ -0.0817166 & 0.85418 & 0 & 0 & 0 & 0.724056 \\ 0 & 0 & 1 & 3.47954 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -0.724056 & -1.29205 & 0 & 0 & 1 & 2.94856 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

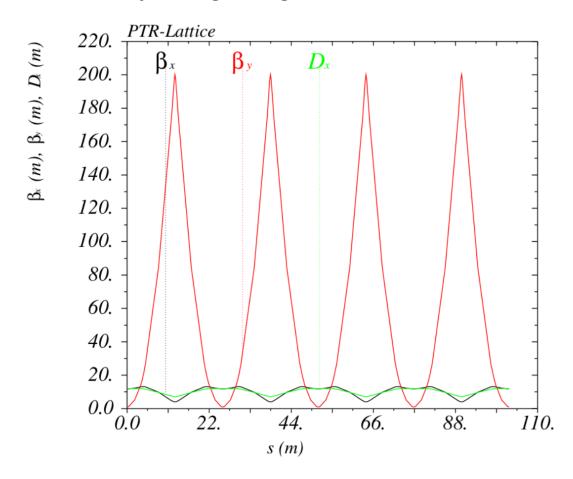


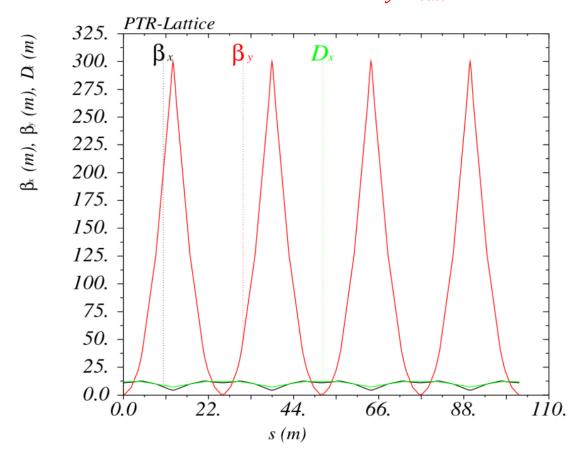

SIMULATION RESULTS

Four different lattices

1. Strong focusing strength with $\beta_{y-max} = 33 m$

2. Medium focusing strength with $\beta_{y-max} = 100 m$




SIMULATION RESULTS

Four different lattices

3. Weak focusing strength with $\beta_{y-max} = 200 m$

4. Weaker focusing strength with $\beta_{y-max} = 300 m$

Four main effects of beam losses

- 1. Hadronic Interactions
- 2. Coulomb Scattering
- 3. Energy Loss Straggling
- 4. Intra Beam Scattering

Two different scenarios with all effects

- i. With residual gas
- ii. With target

Calculations for four lattices are performed in each case

1. Hadronic interaction

- i. With residual gas
- ii. With target

$$\tau^{-1} = n\sigma_{tot}f_0$$

i. With residual gas

- Gases are $H_2: N_2$ with 80:20
- $\sigma_{tot} = 204 \text{ mb}$
- Nitrogen equivalent pressure $P_{eq} = 2.8 \times 10^{-11} \ Torr$
- $n_{rg} = 1.9 \times 10^6 \ particles$
- $f_0 = 1.138 \text{ MHz}$

$$\tau^{-1} = 2.99 \times 10^{-15} \, s^{-1}$$

$$au_{loss} = beam \ loss \ rate$$
 $n = target \ thickness \ or \ rest \ gas \ density$
 $\sigma_{tot} = total \ cross \ section$
 $f_0 = revolution \ frequency$

ii. With Target

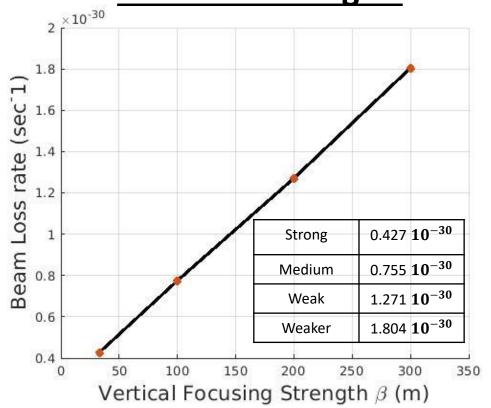
- Hydrogen pellet target with thickness $n_t = 4.0 \times 10^{15} \text{ atoms } / \text{cm}^2$
- $\sigma_{tot} = 85 \ mb$

$$\tau^{-1} = 3.86 \times 10^{-7} \, s^{-1}$$

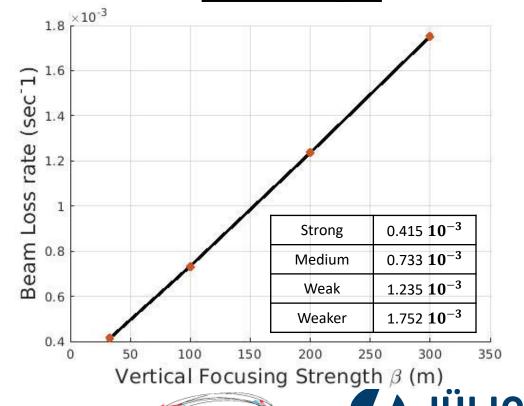
As there is no dependency on optical functions this effect remains the same for all lattices

2. Coulomb Scattering

$$\tau^{-1} = n\sigma_{tot}f_0$$


Where :
$$\sigma_{tot} \propto \frac{1}{\gamma \beta \theta}$$

$$\theta = \sqrt{\frac{A}{\beta_{\perp}}}$$


A=Transverse acceptance=10 mm mrad β_{\perp} = Transverse betatron amplitude

Lattice type	$\langle eta_{\perp} angle$ (m)	θ _{min} (mrad)
Strong	12.206	0.905
Medium	21.560	0.681
Weak	36.312	0.525
Weaker	51.535	0.441

i. With residual gas:

ii. With Target

3. Energy Loss Straggling

$$\tau^{-1} = f_0 \mathbf{P}$$

P=relative beam loss probability per turn

Probability depends on maximum energy loss and longitudinal acceptance

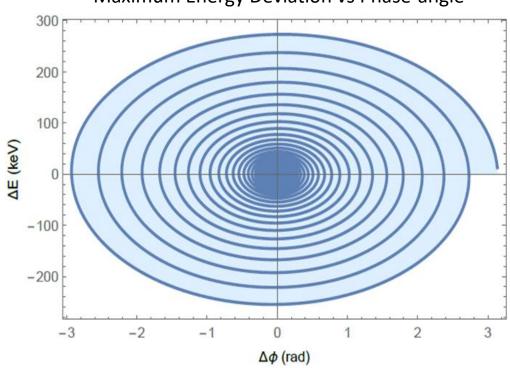
Maximum energy loss $\epsilon_{max} = 66.32 \ keV$ \Longrightarrow longitudinal momentum deviation $\delta_{max} = 1.12 \times 10^{-3}$

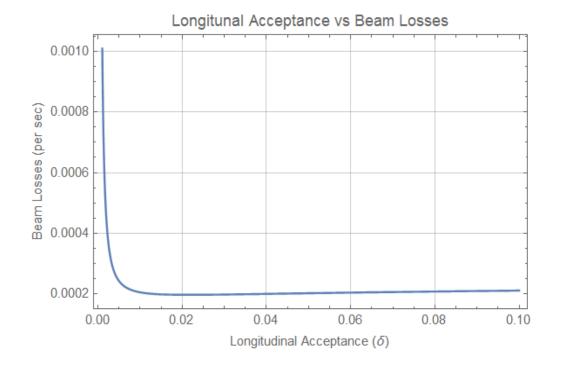
Geometrical longitudinal acceptance
$$\delta_{acc} = \frac{chamber\ radius}{Max.\ dispersion} = \frac{30\ mm}{D_{max}}$$

$$\delta_{max} < \delta_{acc}$$
 \Longrightarrow

No beam loss with T=30 MeV theoretically

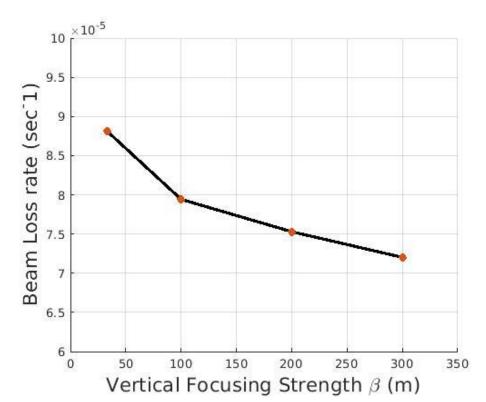
Lattice type	$\delta_{acc}(10^{-3})$
Strong	2.519
Medium	2.588
Weak	2.514
Weaker	2.466


$$\Delta E_{max} = \pm \sqrt{\frac{2 \beta^2 e U E}{\pi q (\alpha_c - 1/\gamma^2)}}$$

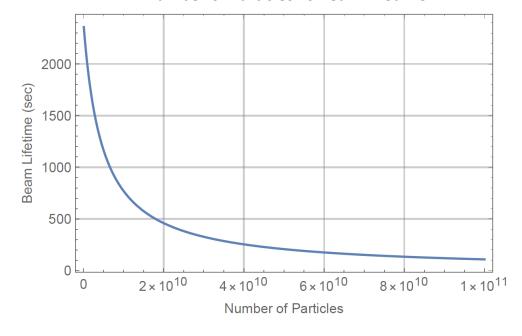

For Strong Lattice

with U = 4 kV, $\alpha_c = 0.554$

 $\Delta E_{max} > \epsilon_{max}$



4. IntraBeam Scattering (IBS)


- Longitudinal acceptance
- Phase-space density

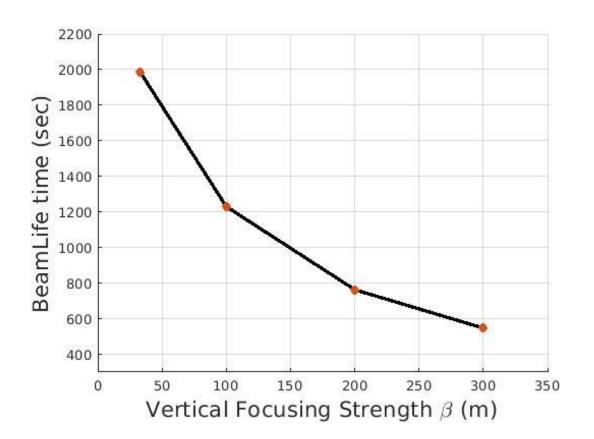
$$D_{\parallel}^{IBS} = longitudinal\ diffusion\ coefficient \sim$$

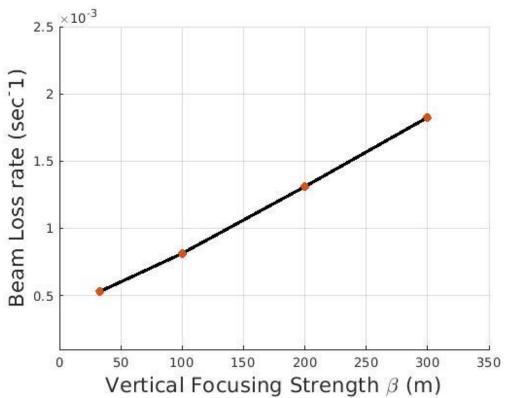
$$\tau_{loss}^{-1} = \frac{D_{\parallel}^{IBS}}{L_c \delta_{acc}^2}$$

$$\frac{N}{(\gamma\beta)\epsilon^{3/2}\sqrt{\beta}}$$

Lattice type	$1/\tau_{loss} \ (10^{-5} s^{-1})$	
Strong	8.814	
Medium	7.942	
Weak	7.529	
Weaker	7.202	

 ϵ = emittance of beam β =average beta function Lc= coulomb logarithm N= 10^9 particles $\gamma\beta$ = beam momentum





Total Beam loss rate

$$\left(\frac{1}{\tau}\right)_{Total} = \left(\frac{1}{\tau}\right)_{HI} + \left(\frac{1}{\tau}\right)_{CS} + \left(\frac{1}{\tau}\right)_{ES} + \left(\frac{1}{\tau}\right)_{IBS}$$

Lattice type	$1/\tau_{loss} \ (10^{-3} s^{-1})$	$ au_{total}\left(s ight)$
Strong	0.530	1986
Medium	0.813	1230
Weak	1.310	763
Weaker	1.825	547

CONCLUSION

Summary:

- Preliminary design of prototype EDM ring
- Optics simulations by using MADX with electrostatic transfer matrix
- Four lattices with different focusing strengths studied
- Beam losses calculated for all lattices which shows
 - Strong focusing with $oldsymbol{eta}_{y-max} < 100 \, m$ is preferable
 - Beam lifetime ≈ 1985 sec
- Further investigations to eliminate systematic effects .
- Conceptual studies of PTR design is under consideration.

REFERENCES

- Vera Poncza , Extensive Optimization of a Simulation Model for the Electric Dipole Moment Measurement at the Cooler Synchrotron COSY PhD thesis, RWTH Aachen 2021
- 1. M.S. Rosenthal. Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY. PhD thesis, RWTH Aachen U., 2016.
- 2. A.D. Sakharov. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. Soviet Physics Uspekhi, 34(5):392–393, May 1991.
- 3. J. Pretz et al. Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings. Hyperfine Interact., 214(1-3):111–117, 2013.
- 4. JEDI collaboration F. Abusaif et al. Feasibility Study for an EDM Storage Ring. Technical Report arXiv:1812.08535, Forschungszentrum Jülich Germany, Dec 2018. * Temporary entry *.
- 5. A. Lehrach et al. Design of a Prototype EDM Storage Ring. In Proceedings, 23rd International Spin Physics Symposium: Ferrara, Italy, pages 10–14, 2018.
- 7. H. Grote and F. Schmidt. CERN MADX introduction. http://mad.web.cern.ch/mad/madx.old/Introduction/doc.html, 2002.
- 8. R. Baartman. Electrostatic Bender Fields, Optics, Aberrations, with Application to the Proton EDM Ring. Technical report, TRIUMF, Dec 2013.
- 9. R. Talman. Miscellaneous Calculations for a Fully Electro-static Proton EDM Experiment, Version II. unpublished, April 2010.
- 10. P. Grafström. Lifetime, Cross-sections and Activation. In CERN Accelerator School, vacuum in accelerators, Platja d'Aro, Spain, 16-24 May 2006, pages 231–226, 2007.
- 11. P. Möller. Beam-Residual Gas Interactions. In CERN Accelerator School: Vacuum Technology, Snekersten, Denmark, 28 May 3 Jun 1999, pages 155–164, 1999.
- 12. A.F. Wrulich. Single-Beam Lifetime. In CERN Accelerator School: 5th General Accelerator Physics Course, Jyväskylä, Finland, 7 18 Sep 1992, pages 409–435,1994
- 13. F. Hinterberger. Beam-Target Interaction and Intrabeam Scattering in the HESR Ring. Emittance, Momentum Resolution and Luminosity.

 Technical Report JUEL- 4206, Forschungszentrum Jülich GmbH (Germany), Feb 2006.

 Member of the Helmholtz Association

THANK YOU

BACK-UP SLIDES

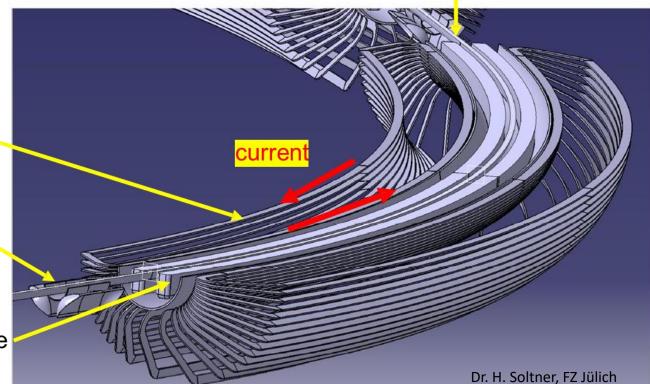
$$\mathsf{EB} = \begin{bmatrix} \cos \xi \theta & \frac{R_0}{\xi} \sin \xi \theta & 0 & 0 & \frac{2-\beta^2}{\xi^2} R_0 (1 - \cos(\xi \theta)) \\ -\frac{\xi}{R_0} \sin \xi \theta & \cos \xi \theta & 0 & 0 & 0 & \frac{2-\beta^2}{\xi} \sin \xi \theta \\ 0 & 0 & \cos \eta \theta & \frac{R_0}{\eta} \sin \eta \theta & 0 & 0 \\ 0 & 0 & -\frac{\eta}{R_0} \sin \eta \theta & \cos \eta \theta & 0 & 0 \\ -\frac{2-\beta^2}{\xi} \sin \xi \theta & -\frac{2-\beta^2}{\xi^2} R_0 1 - \cos \xi \theta & 0 & 0 & 1 & R_0 \theta [\frac{1}{\gamma^2} - (\frac{2-\beta^2}{\xi})^2 (1 - \frac{\sin \xi \theta}{\xi \theta})] \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Kinematic Parameters

Parameter	Frozen spin	Pure electric	Unit
E Kinetic	45	30	MeV
β	0.299	0.247	
Pc	294.057	239.158	MeV/c
Вρ	0.981	0.798	Tm
Ερ	87.941	59.071	MV
Υ	1.048	1.032	
Emittance	1.0	1.0	mm mrad
Acceptance	10	10	mm mrad

ELECTRIC MAGNETIC BENDING

■ Iron free shielding for reversel of B

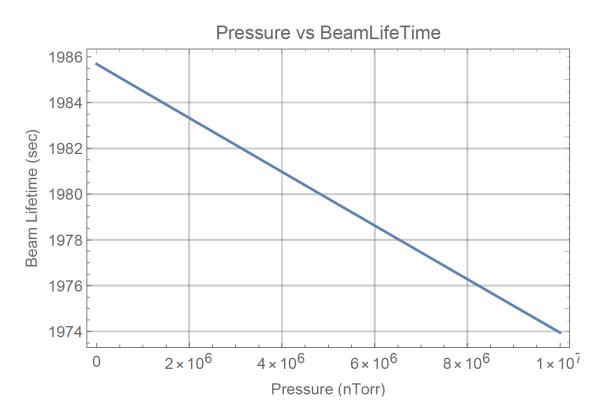

Special design to avoid fringe fields

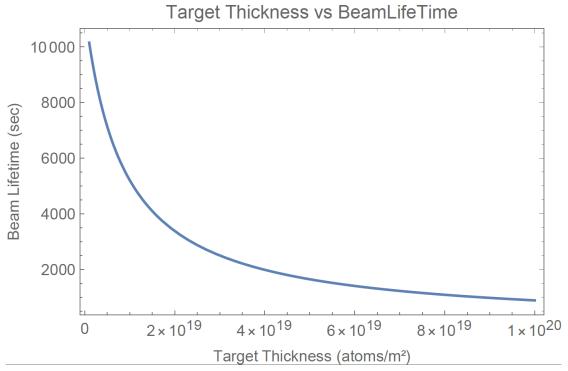
Electric					
8					
6.959	m				
60	mm				
200	KV				
6.667	MV/m				
45	degree				
Magnetic					
0.04	Т				
5	Amm ⁻²				
60	per element				
	8 6.959 60 200 6.667 45 netic 0.04 5				

Copper bars

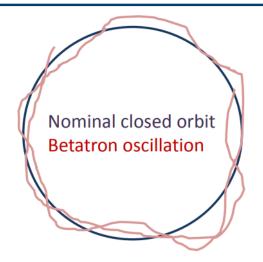
Quadrupole

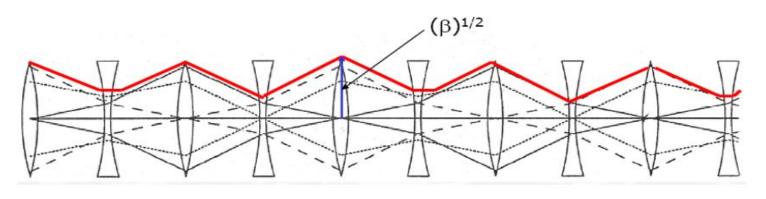
Outer bend plate



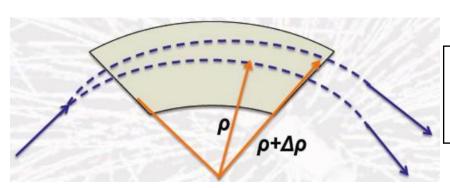


Beam axis


PLOTS



BRIEF INTRODCTION TO ACCELERATOR PHYSICS


 β_{χ} , β_{γ} are betatron functions

$$x(s) = \sqrt{\epsilon \, \beta_x(s)} \cos(\varphi(s) + \varphi_0)$$

Amplitude of an oscillation

 $\beta(s)$ represents the envelope of all particle trajectories at a given position s in a storage ring

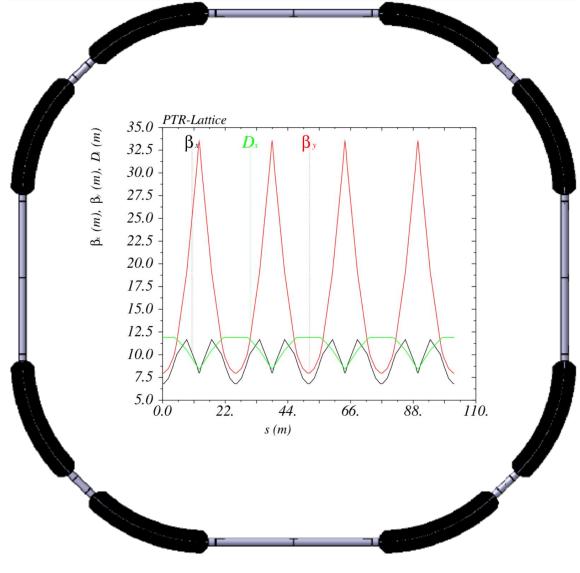
- Off-momentum particles oscillate around a different closed orbit
- The displacement between the designed and displaced orbits is controlled by the dispersion function D(s)

TUNE VARIABILITY

Number of betatron oscillations per turn is known as betatron tune

Betatron tunes can be varied over a large range

Betatron tunes


$$0.2 \le Q_x \le 2.5$$

$$0.1 \leq Q_y \leq 2.5$$

 Lattice can be adjusted from ultra-weak to moderate focusing

Betatron functions

$$\beta_{x} \leq 20 m$$
$$\beta_{y} \leq 400 m$$

