Upgrade of Electronic Systems at COSY

Fabian Hinder (FZJ, RWTH Aachen University)

Search for Charged Particle Electric Dipole Moments (EDMs)

Generic Idea

- 1. Apply electric field \vec{E} to particle in storage ring
- 2. Due to EDM \vec{d} , spin rotates out of horizontal plane
- 3. Measure vertical polarisation build up \Rightarrow EDM \vec{d}

Key Requirements:

- Study
 systematic effects
- Maximize horizontal polarisation lifetime (→ ~1000 s)

Development of new Ultra Precise Beam Position Monitors (BPMs)

One major source of systematic effects

Radial \vec{B} field mimics EDM if:

$$\mu B_r pprox d E_r$$
 with $d=10^{-29}\,\mathrm{e\cdot cm}$ and $E_r=10\,\mathrm{MV/m}$

$$\Rightarrow B_r = \frac{dE_r}{\mu} = \frac{10^{-22} \text{eV}}{3.1 \cdot 10^{-8} \text{eV/T}} \approx 3 \cdot 10^{-17} \text{ T}$$

Solution

Two counter rotating beams

- 1. Separation of beams sensitive to B_r
- 2. Compensate separation with BPMs

One possible BPM system based on SQUIDs*

Place SQUIDs near beam and measure magnetic field

⇒ Calculate position from magnetic field distribution

Development and test of BPMs in a "LAB COSY beam pipe" X-Y-tables Standard COSY BPM Space for new devices

* Superconducting QUantum Interference Device

