

Simulations of Beam Dynamics of Prototype EDM Storage Ring

Saad Siddique, on behalf of the JEDI Collaboration

Institut für Kernphysik, Forschungszentrum Jülich, Germany III. Physikalisches Institut B, RWTH Aachen University, Germany GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt, Germany

saad.siddique@rwth-aachen.de

Physics Case:

- Matter antimatter asymmetry can be explained by CP- violation
- Permanent electric dipóle moment (EDM) is fundamental property of particles (like mass, charge, magnetic moment) **Existence of EDM only possible if violation** of time reversal and parity symmetry.

Strategy:

1. Precursor Experiment @ COSY Storage Ring Forschungszentrum Jülich Germany

 \vec{S}

Prototype proton EDM Storage Ring (PTR)

3. All electric Storage ring

Prototype EDM Storage Ring:

Ring will be operated in two modes:

- Electrostatic bendings (at T=30 MeV)
- Electromagnetic bendings (at T=45 MeV)

Goals

- Beam injection with multiple polarization states and for longer time. (> 1000 sec)
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

 D_X

 D_{X}

Simulations :

(a) Strong lattice

(b) Medium lattice

100 -

Four Lattice with different focusing strength generated by MADX.

Estimation of Beam Loss Rates:

1.Hadronic Interactions (HI) 2.Coulomb Scatterings (CS) 3.Energy Loss straggling (ELS) 4.Intrabeam Scatterings (IBS)

Residual Gas & Target:

Gases composition $H_2: N_2$ with 80:20 • Nitrogen equivalent pressure $P_{eq} = 2.8 \times 10^{-11} torr$

Rest Gas density Carbon target density $n_{rg} = 5.30 \times 10^5 \ atoms/cm^3$ $n_t \sim 2 \times 10^{12}$ atoms /cm²

Results :

Total beam loss rates $\left(\frac{1}{\tau}\right)_{Tot} = \left(\frac{1}{\tau}\right)_{HI} + \left(\frac{1}{\tau}\right)_{CS} + \left(\frac{1}{\tau}\right)_{ES} + \left(\frac{1}{\tau}\right)_{IBS}$

Beam loss rates for residual and target for all four lattices

Energy loss straggling isn't contributing theoretically in beam loss rates

Lattice	HI $(10^{-6}s^{-1})$	$\frac{\text{CS}}{(10^{-4}s^{-1})}$	$(10^{-4}s^{-1})$	$(1/\tau)_{tot}(10^{-4}s^{-1})$	$ au_{tot}(s)$
Strong	2.14	6.46	2.34	8.82	1133
Medium		20.21	2.10	22.34	447
Weak		57.48	1.99	59.49	168
Weaker		115.87	1.90	117.79	85

Summary:

- Preliminary design of prototype EDM ring
- Most dominating effect is Single Coulomb
- Scatterings
- Lattice with $\beta_{y-max} \leq 100 m$ is preferable for longer beam lifetime.

References:

- 1. F. Hinterberger. Beam-Target Interaction and Intrabeam Scattering in the HESR Ring.Technical Report JUEL- 4206, Forschungszentrum Jülich GmbH (Germany), Feb 2006.
- 2. F. Abusaif et al., Storage ring to search for electric dipole moments of charged particles.Feasibility Study. CERN Yellow Reports: Monographs, Geneva. Geneva: CERN. CERN, Jan 2019

Member of the Helmholtz Association