Electric Dipole Moments

Search for electric dipole moments of charged particles in storage rings JEDI Collaboration

Paolo Lenisa

University of Ferrara and INFN, Italy

PSTP-2019, September 23rd 2019, Knoxville, Tennessee

Electric Dipole Moments

Motivation

Introduction

Electric Dipole Moments (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible only via violation of time-reversal $T \stackrel{CPT}{=} CP$ and parity P
 - connection to matter-antimatter asymmetry

Symmetry violations

T and P violation of EDM

$$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} - d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

$$\bullet T: H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

$$\bullet P: H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

Symmetry violations

T and P violation of EDM

$$\begin{split} H &= -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} - d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E} \\ \bullet \ \ \text{T:} \ H &= -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E} \end{split}$$

• P:
$$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d\frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

EDM meas. test violation of P and T symmetries ($\stackrel{CPT}{=}$ CP)

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

• Excess of Matter in the Universe:

$$\eta = rac{n_B - n_{\overline{B}}}{n_{\gamma}} egin{array}{c|c} {
m observed} & {
m SM \ prediction} \\ {
m 6} imes {
m 10}^{-18} \\ \end{array}$$

Sacharov (1967): CP-violation needed for baryogenesis

Symmetry violations

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

• Excess of Matter in the Universe:

- Sacharov (1967): CP-violation needed for baryogenesis
- New CP-V sources beyond SM needed
- Could show up in EDMs of elementary particles

EDM: Current upper limits

Conclusions

Spares

EDM: Current upper limits

FZ Jülich: EDMs of charged hadrons: p, d, 3He

Why Charged Particle EDMs?

- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
 - can apply larger electric fields in storage rings
- complementary to neutron EDM:

Spares

Why Charged Particle EDMs?

- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
 - can apply larger electric fields in storage rings
- complementary to neutron EDM:

EDM of single particle not sufficient to identify CP-V source

Limits

Sources of CP Violation

Electric Dipole Moments

Experimental method

Concept

Search for EDM in storage rings: concept

Procedure

- Inject particles in storage ring
- 2 Align spin along momentum (\rightarrow freeze horiz. spin-precession)

Concept

Search for EDM in storage rings: concept

Procedure

- Inject particles in storage ring
- ② Align spin along momentum (→ freeze horiz. spin-precession)
- Search for time development of vertical polarization

Requirements and expectation

Requirements

Electric Dipole Moments

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E = 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Requirements and expectation

Requirements

Electric Dipole Moments

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E = 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of DT:

- $\sigma_{stat} = \frac{\hbar}{\sqrt{N t_{\tau} P \Delta F}} \Rightarrow \sigma_{stat} = 10^{-29} e \cdot cm$
- Experimentalist's goal: provide σ_{syst} to the same level.

Electric Dipole Moments

Achievements at COSY

The COSY storage ring

Electric Dipole Moments

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

The COSY storage ring

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Formerly used as spin-physics machine for hadr. physics:

- Ideal starting point for srEDM related R&D
- First direct measurement of deuteron EDM

Electric Dipole Moments

Experiment preparation

• Inject and accelerate vertically pol. deut. to p \approx 1 GeV/c

Studies at COSY

000000000

Experiment preparation

- ${\color{red} \bullet}$ Inject and accelerate vertically pol. deut. to p \approx 1 GeV/c
- Plip spin with solenoid into horizontal plane

Electric Dipole Moments

Experiment preparation

- Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on target
- Measure asymmetry and determine spin precession

Polarimeter

Electric Dipole Moments

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$

Studies at COSY

000000000

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6 \text{ turns/precession}$
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6 \text{ turns/precession}$
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Solution: map many event to one cycle

- Counting turn number n \rightarrow phase advance $\phi_s = 2\pi \nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \to \phi_s \mod 2\pi$

Optimization of spin-coherence time

Optimization of spin-coherence time

Major achievement

- τ_{SCT} = (782 \pm 117)s
- Previously: $\tau_{SCT}(\text{VEPP}) \approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions})$
- Large value of SCT of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$

Precise determination of the spin-tune

Spin-tune ν_s

$$\nu_s = \gamma G = \frac{\textit{nb.spin-rotations}}{\textit{nb.particle-revolutions}}$$

Precise determination of the spin-tune

Spin-tune ν_s

$$u_{
m s} = \gamma {\it G} = rac{{\it nb.spin-rotations}}{{\it nb.particle-revolutions}}$$

Interpolated spin tune in 100 s:

- $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3×10^{-8} per year (g-2 experiment)
- → new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

At COSY: freezing of spin precession not possible

→ phase-locking required to achieve precision for EDM

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

Electric Dipole Moments

Phase locking spin precession in machine to device RF

At COSY: freezing of spin precession not possible

→ phase-locking required to achieve precision for EDM

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

Major achievement:

Error of phase-lock σ_{ϕ} = 0.21 rad

Electric Dipole Moments

Towards a storage ring EDM measurement

Studies at COSY

0000000000

Staged approach

Stage 1

precursor experiment at COSY (FZ Jülich)

magnetic storage ring

now

Stage 2

prototype ring

- electrostatic storage ring
- simultaneous (*) and (*) beams
- 5 vears

Stage 3

dedicated storage ring

· magic momentum

(701 MeV/c) 10 years

 $\sigma_{\text{EDM}}/(e\cdot \text{cm})$

COSY precursor experiment EDM measurement in a magnetic storage ring

• Exploitation of motional electric field in particle rest frame: $E^* = v \times B$

COSY precursor experiment EDM measurement in a magnetic storage ring

• Exploitation of motional electric field in particle rest frame: $E^* = v \times B$

Problem

- Momentum ↑↑ spin ⇒ spin kicked up
- Momentum ↑ ↓ spin ⇒ spin kicked down
- ⇒ no accumulation of vert. asymmetry

 $\vec{E}^* = \vec{v} \times \vec{B}$

Achievements

COSY precursor experiment EDM measurement in a magnetic storage ring

• Exploitation of motional electric field in particle rest frame: $E^* = v \times B$

Problem

- Momentum ↑↑ spin ⇒ spin kicked up
- Momentum $\uparrow \downarrow$ spin \Rightarrow spin kicked down
- no accumulation of vert. asymmetry

Solution: RF-Wien filter

- Lorentz force: $\overrightarrow{F_L} = q(\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B}) = 0$
- \bullet $\overrightarrow{B} = (0, B_v, 0)$ and $\overrightarrow{E} = (E_x, 0, 0)$

 $\vec{E}^* = \vec{v} \times \vec{B}$

phase lock between spin precession and RF Wien filter

polarization build-up

Spin-tracking simulations necessary

- Orientation of stable spin axis at location of RF Wien filter including EDM determined by minimum of map
- Spin tracking simulation → orientation of stable spin axis without EDM
- Second run foreseen in 2020
- First ever measurement of deuteron EDM

Electric Dipole Moments

Next steps

Stage 2: prototype ring

Stage 2: prototype EDM storage ring

Next step

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI+srEDM)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN

Scope of prototype ring of 100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

- Storage time
- CW-CCW operation
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling
- pEDM measurement

Stage 3: precision EDM ring

500 m circumference ring

- All-electric deflection
- Magic momentum (p = 701 MeV/c)

Spares

- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest ever conceived)

Search for charged particle EDMs (p, d, ³He)

- EDMs → probes of CP-violating interactions
- Matter-antimatter asymmetry
- Measurements of different particles required

Conclusions

Search for charged particle EDMs (p, d, ³He)

- EDMs → probes of CP-violating interactions
- Matter-antimatter asymmetry
- Measurements of different particles required

Investigations at COSY

- Important achievements accomplished
- First measurement of deuteron EDM ongoing
 - Results expected end 2020

Conclusions

Search for charged particle EDMs (p, d, ³He)

- EDMs → probes of CP-violating interactions
- Matter-antimatter asymmetry
- Measurements of different particles required

Investigations at COSY

- Important achievements accomplished
- First measurement of deuteron EDM ongoing
 - Results expected end 2020

Interest and acknowledgment

- Project acknowledged with ERC-AdG "srEDM"
- Study group established at CERN:
 - Design of a small-scale prototype ring
 - Feasibility study of a pure electrostatic EDM proton ring

JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

- 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Julich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi

JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

- 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Julich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi

Coming talks from JEDI Collaboration at PSTP:

- Ed Stephenson: "A Search for Axion-like Particles with a Horizontally Polarized Beam In a Storage Ring" (next talk)
- Irakli Keshelashvili: "Development of a Dedicated Precision Polarimeter for Charged Particle EDM searches at COSY" (Tue. 24.09 - 11:40)

Electric Dipole Moments

Spare slides

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{\overrightarrow{ds}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{s} = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2}\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)}_{=\Omega_{EDM}} \right] \times \overrightarrow{s}$$

- Mag. dip. mom. (MDM): $\overrightarrow{\mu} = 2(G+1)\frac{q\hbar}{2m}\overrightarrow{s}$ (G=1.79 for proton)
- El. dip. mom. (EDM): $\overrightarrow{d} = \eta \frac{q\hbar}{2mc} \overrightarrow{s} (\eta = 2 \cdot 10^{-15} \text{ for d} = 10^{-29} e \cdot cm)$

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{\overrightarrow{\sigma s}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{s} = \frac{-q}{m} \left[\underbrace{\overrightarrow{GB} + \left(G - \frac{1}{\gamma^2 - 1} \right) \overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{MDM}} + \underbrace{\frac{\eta}{2} \left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B} \right)}_{=\Omega_{EDM}} \right] \times \overrightarrow{s}$$

- Mag. dip. mom. (MDM): $\overrightarrow{\mu} = 2(G+1)\frac{q\hbar}{2m}\overrightarrow{s}$ (G=1.79 for proton)
- El. dip. mom. (EDM): $\overrightarrow{d} = \eta \frac{qh}{2mc} \overrightarrow{s} (\eta = 2 \cdot 10^{-15} \text{ for d} = 10^{-29} e \cdot cm)$

Frozen spin

$$\frac{\overrightarrow{\sigma s}}{dt} = \overrightarrow{\Omega} \times \overrightarrow{s} = \frac{-q}{m} \left[\underbrace{\overrightarrow{GB} + \left(G - \frac{1}{\gamma^2 - 1} \right) \overrightarrow{V} \times \overrightarrow{E}}_{\Omega_{MDM} = 0 \to frozenspin} + \frac{\eta}{2} \left(\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B} \right) \right] \times \overrightarrow{s}$$

- Achievable with pure electric field for proton (G>0): $G = \frac{1}{\gamma^2 1}$
- Requires special combination of E, B fields and γ for d, ${}^{3}He$ (G<0)

Electric Dipole Moments

Stage 1: proof of principle experiment using COSY

Thomas - BMT equation for a magnetic ring:

$$\frac{\overrightarrow{ds}}{\overrightarrow{dt}} = \overrightarrow{\Omega} \times \overrightarrow{s} = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{V} \times \overrightarrow{E}}_{=\Omega_{\text{MDM}}} + \underbrace{\frac{\eta}{2}\left(\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B}\right)}_{=\Omega_{\text{EDM}}} \right] \times \overrightarrow{s}$$

Storage rings: vertical B fields, radial E field

- MDM → fast spin precession in the horizontal plane
- EDM → slow vertical polarization buildup, up and down

Electric Dipole Moments

Studies at COSY

Stage 1: proof of principle experiment using COSY

Thomas - BMT equation for a magnetic ring:

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{ADDM}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{V} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$

Storage rings: vertical B fields, radial E field

- MDM → fast spin precession in the horizontal plane
- EDM → slow vertical polarization buildup, up and down

Access to EDM through motional E field

- Pure magnetic ring \rightarrow motional electric field: $\overrightarrow{V} \times \overrightarrow{B}$
- ⇒ access to EDM

Spares

Waveguide RF Wien filter

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY

Waveguide RF-Wien filter

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY
- RF-Wien filter operation:

Effect of EDM on stable spin-axis

EDM tilts the stable spin-axis

- Presence of EDM $\rightarrow \varepsilon_{EDM} > 0$
 - ullet ightarrow spin precess around the $ec{c}$ axis
 - ullet o oscill. vert. polarization $p_y(t)$

Measurement of EDM-like buildup signals

Rate out-of-plane angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

• Variation of ϕ_{rot}^{WF} and χ_{rot}^{Sol1} affects the pattern of observed initial slopes $\dot{\alpha}$

$$\dot{lpha}$$
 for $\phi^{
m WF}_{
m rot}=-1^{\circ}$, 0° , $+1^{\circ}$ and $\chi^{
m Sol\,1}_{
m rot}=0$

 $\dot{\alpha}$ for $\phi_{\rm rot}^{\rm WF}=-1^{\circ}$, 0° , $+1^{\circ}$ and $\chi_{\rm rot}^{\rm Sol\,1}=0$. $\dot{\alpha}$ for $\chi_{\rm rot}^{\rm Sol\,1}=-1$, 0, $+1^{\circ}$ and $\phi_{\rm rot}^{\rm WF}=0$.

Polarization buildup

Metod

- Wien filter operated with B normal to the ring plane
- Measurement of initial slopes of polarization buildup:
 - $\alpha(t) = \arctan(\frac{P_y}{P_{xx}})$

Study of machine imperfections

Precise experimental technique

New method to investigate magnetic machine imperfections through accurate determination of spin-tune

Spin tune mapping

- Two solenoids act as spin rotators → generate artificial imperfection fields
- Measure spin-tune shifts vs spin kicks

Study of machine imperfections

Precise experimental technique

New method to investigate magnetic machine imperfections through accurate determination of spin-tune

Spin tune mapping

- Two solenoids act as spin rotators → generate artificial imperfection fields
- Measure spin-tune shifts vs spin kicks
- Saddle point determines tilt of stable spin axis by machine imperfections
- Control of background from MDM: $\Delta c = 2.8 \times 10^{-6} \text{ rad}$
- Systematics sensitivity for d-EDM: $\sigma_d \approx 10^{-20} \text{ e-cm}$

