Topic 2: Cosmic Matter in the Laboratory

Matter and the Universe

Spin Tune Determination at COSY

Dennis Eversmann (RWTH Aachen University and FZJ)

Search for Charged Particle EDMs

The spin precession in electric and magnetic fields affected by an electric dipole moment (EDM)

Thomas-BMT equation:
$$\frac{d\vec{S}}{dt} = \vec{\Omega}_s \times \vec{S}$$
 with $\vec{\Omega}_s = \frac{-q}{m} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \left(\frac{\vec{\beta} \times \vec{E}}{c}\right) + d\frac{mc}{q\hbar S} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right) \right\}$
Spin tune measurement sensitive to EDM: $\mathbf{v}_s = \frac{\left|\vec{\Omega}_s\right|}{\omega_{rev}} = \frac{\text{spin rotations}}{\text{particle revolutions}}$

Pure magnetic ring (COSY) and d=0: $v_s = \gamma G \approx -0.1609$ for a p=0.97 GeV/c deuteron beam

New Method to Determine the Spin Tune

Measure up-down asymmetry in polarized deuteron-carbon elastic scattering

Asymmetry: $\mathcal{A}(t) = \frac{N_{up}(t) - N_{down}(t)}{N_{up}(t) + N_{down}(t)} \sim \sin(|\vec{\Omega}_s|t + \varphi_0)$

Spin precession ~ 120 kHz >> 5 kHz event rate \rightarrow no **direct fit possible**

Solution:

II. Calculate asymmetry for every one second interval and fit a sine

 $\mathcal{A}_{fit}(\varphi_s) = A\sin(\varphi_s + \varphi_0) + offset$

III. Vary the spin tune \mathbf{v}_s and find maximal amplitude

 \rightarrow Fix the spin tune for one cycle (100 s) and monitor the phase of the asymmetry fit φ_0

Conclusion and Questions

Interpolation of the spin tune

Spin tune for different runs with

Results

The spin tune can determined with a precision of 10^{-10} in 100 s

Why does the spin tune change

during one cycle?

II. from cycle to cycle?

