

Pellet target development for the EDM search experiment at storage ring COSY

11.11.2021 OTARI JAVAKHISHVILI

Overview

1) Introduction

2) Polarimeter concept

- 3) Target systems
- 4) Pellet target
 - 1) System design
 - 2) Triggrting and TOF
 - 3) Image processing
 - 4) Some tests
- 5) Summary

EDM – Electric Dipole Moment

- fundamental property of particles (like magnetic moment, mass, charge)
- permanent separation of positive and negative charge

For all *EDM* experiments Interaction of *d* with *E* is necessary!

Method:

- a) Store longitudinally polarized particles in storage ring
- b) Interact with a radial E-field
- c) Analyze Polarization Build-up

 $\frac{d\vec{s}}{dt} \propto d \cdot \vec{E} \times \vec{s}$

COSY storage ring

Internal and external beams

High polarization (p, d) Spin manipulation !!!

Mitglied der Helmholtz-Gemeinschaft

Polarimeter concept

- ► Reaction with Large FOM $(\sigma A_y^2) \& (\sigma_{ela}/\sigma_{tot})$: Best dC→dC
- Maximum Detection & Data Taking Efficiency
- ≻ Full Φ in Reasonable FOM(θ) region

LYSO calorimeter modules

.52 independent LYSO modules .Each module is tested and calibrated separately

Silicon layer **Optical coupling** Mechanical stability

> Cut corners for mechanical fixation

Mitglied der Helmholtz-Gemeinschaft

.

Otari Javakhishvili

LYSO calorimeter modules

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Slide 9

Forschungszentrum

Different target systems

- 1. Carbon block extraction Strong EM influence on beam
- 2. Wire target inefficient, even with very thin wire the dencity is still too high

Carbon block target used in JePo

target driver system

carbon block target 2x2x3cm

hardware interlock system

Horizontal and vertical targets in the target chamber

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Carbon block target (working principle)

- 1. Industry standart G-code interface
- 2. EPICS based network controll
- 3. Several level safety systems
- 4. Automatic position search
- 5. Automatic controll mode

Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

JUDIT - Juelich Ballistic Diamond Pellet Target

- Target capable to measure 2D/3D polarization profile
- Huge dynamic range in effective target thickness
- "quasi" Non-invasive, no rest gas
- small size 10-100 µm diamond pellets

Otari Javakhishvili

Pellet target system (realisation)

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Pellet TOF (time of flight) measurement

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Test beanch fot TOF measurement

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

TOF test results

JDP Setup	Serial	TC	P Client TCP Ser	ver UDP
eceived/Se	ent data			
current	time	->	103.250824	ms
urrent	time	->	103.250824	ms
urrent	time	->	103.250827	ms
urrent	time	->	103.250824	ms
current	time	->	103.250824	ms
current	time	->	103.250824	ms
urrent	time	->	103.250824	ms
current	time	->	103.250824	ms
current	time	->	103.250824	ms
current	time	->	103.250824	ms
urrent	time	->	103.250824	ms
urrent	time	->	103.250822	ms
urrent	time	->	103.250824	ms
urrent	time	->	103.250824	ms
current	time	->	103.250822	ms
current	time	->	103.250824	ms
current	time	->	103.250822	ms
current	time	->	103.250824	ms
Modem line	25			*
Send				

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

FPGA design

FPGA image processing core

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Image processing hardware

667 MHz dual-core Cortex-A9 processorHigh-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO1 GB DDR3L RAM

FPGA - XC7Z020-1CLG400C Look-up Tables (LUTs) 53,200 Flip-Flops 106,400

5MP color system-on-chip image sensor

Dual lane MIPI CSI-2 image sensor interface

Supports QSXGA@15Hz, 1080p@30Hz, 720p@60Hz, VGA@90Hz and QVGA@120Hz

Output formats include RAW10, RGB565, CCIR656, YUV422/420, YCbCr422, and JPEG compression

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

FPGA image processing tests

Image from custom linux running on FPGA board

Test using color invert and Sobel filter

Test using Pewitt filter

.

Test using canny edge detect ad standalone firmware with SD card frame grabber

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

FPGA image processing tests

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili

Summary

- JePo has been installed at COSY ring and successfully used in several EDM experiments.
- Carbon block target control, monitoring and safety systems has been developed and tested.
- Pellet target (JUDIT) concept has been suggested.
- TOF system is developed and tested on test bench.
- Different parts for pellet target system has been developed, includeing interfacing with camera and HDMI.
- The object detection and tracking IPs has been created and demonstrated with simulations.

Outlook

- Apropriate mechanical system must be developed to demonstrat the whole concept of JUDIT.
- Better and faster camera sollution must be found to have more precise tracking.
- User side software has to be developed to control target from remote location.

This project was supported by Shota Rustaveli National Foundation of Georgia (SRNSFG) JFZ_18_01

Thank You

Mitglied der Helmholtz-Gemeinschaft

Otari Javakhishvili