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 fFrFriendly, heated long presentations,

 AnjVirtuoso guitar, endless songs.

On Dyatlov Hills Niznii Novgorod lies 

Amazed by  Universe in a blue sky
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• Weighing the vacuum using magnets and quantum-noise limited RF 
amplifiers!

• The technology is here to make decisive axion experiments

• Superconducting devices make the difference!

• Spin of patricles in storage rings as an axion detector

• Intimate relation to EDM & baryogenesis

LCN Workshop 13, Nizhnii Novgorod, 26 January 2019

Axion dark matter search:
The final frontier
Yannis Semertzidis (CAPP)

Kolya Nikolaev (Landau Institute)
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IBS/CAPP at Munji Campus, KAIST, January 2017.



IBS/CAPP-Physics
(Established October 2013)

Strong CP problem (Symmetry crisis in strong 
forces: hadronic EDM exp. Limits too small!)

 Cosmic Frontier (Dark Matter axions): Improve in all possible fronts: B-
field, Volume, Resonator Quality factor, Physical and Electronic noise. 

 Storage ring proton EDM (most sensitive hadronic EDM experiment). 
Improve theta_QCD sensitivity by three to four orders of magnitude!

 Together with long-range monopole-dipole (axion mediated) forces probe 
axion Physics! 



Prelude to axions: QED in gyroscopic medium

V. Mandelzweig & I. Shapiro, Sov. Phys. JETP 29 (1969) 1114 and 
many earlier works

 Gyrotropic medium  a nontrivial vacuum with P-violating dielectric 

tensor  boils down to a scalar product EB in the free field QED 

Lagrangian

 Familiar case of nontrivial QED vacuum: magnetoplasma

 Crucial point: P- , T-and CP-breaking mixing of the E and B fields)

 T-reversal violation was overlooked by Mandelzweig and Shapiro

 Straightforward extension from QED to QCD

 1114
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The Strong CP-problem, 
Axion parameters, 

Dark Matter
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CP-breaking EB mixing in QCD and neutron EDM
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Dimensional analysis (naïve) estimation of the neutron EDM:
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In simple terms:  the theory of strong interactions demands a 
large neutron EDM.  Experiments show it is at least ~9-10 orders 
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Strong CP problem and axions
 Peccei-Quinn: θQCD is a dynamical variable (1977), a(x)/fa.  It 

goes to zero naturally

 Wilczek and Weinberg: axion particle (1977)

 J.E. Kim: Hadronic axions (1979)

 Axions: pseudoscalars,

light cousins of neutral pions



QCD induced QED signal of axions

P. Sikivie: Axions convert into microwave photons in 

the presence of a DC magnetic field (inverse 

Primakov effect)  

a

X

Detector
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Dark Matter from Axions ?
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Eric Charles, Fermi-LAT collaboration



Cosmological inventory



Sikivie-Primakoff mechanism 
in a RF cavity
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Axion mass is unknown - need to tune 
the cavity over a vast frequency range
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Quantum-noise limited RF-amplifiers

 Frequency of interest: 1-10 GHz first phase; 10-20 GHz 
second phase

 Immediate need: 2-3 GHz, 3-7 GHz

 Longer term: 1-3 GHZ, 7-10 GHz, and finally up to 20 GHz



Quantum-noise limited RF-amplifiers

 Tunable range >100MHz

 Ease of operation

 As low noise as possible



 Critical!

 Make or break!

 With them, we can reach theoretically interesting 
sensitivities.  Without them, we can’t.  

 In other words, they mean everything!

How important are the quantum 
noise limited amplifiers?



The conversion power on resonance
a 

2

022

500 liter 7 Tesla 0.4
2 10 Watt 

BV C


 

    
       

    

2 2

25 3 5
0.36 5 10 gr/cm GHz 10

La a
g m Q

h

c 


  

      
     
     

The axion to photon conversion power is 
very small.   

2

2

0 La a

a

g
P V B

f
C m Q






 
    

 
  

19



20



Axion coupling vs. axion mass

Axions here solve the
Strong CP-problem

ALPs:
Axion
Like
Particles



How CAPP is making a difference

 Establish a facility to take immediate advantage of currently 
available technology

 HTS and 

 LTS (NbTi, and Nb3Sn) magnets

 NI-HTS, 18T, 70mm diam. Delivered Summer 2017 

 NI-HTS, 25T, 100mm diam. (funding limited) delivery in 2020

 LTS (Nb3Sn), 12T, 320mm diam. To be delivered in late 2020



CAPP’s plan
 Low temperature, high quality resonators (near SC?)

 Quantum-noise limited RF-detectors (SQUIDs, JPAs)

 Single photon RF-detectors (>10GHz).  (First appl. of qubits?)



CAPP’s base plan

 Microwave cavities 0.7-20 GHz, using 25T/10cm and 12T/32cm 
magnets

 Then combine the two magnets to obtain 37T

 Phase-lock two or more axion dark matter exps.

 Open resonators R&D for higher frequency

 Wide band axion-mass network…



How CAPP is making a difference

 Establish lowest cavity temperature (<50mK)

 Develop Microstrip SQUID Amplifiers (MSAs) from KRISS, 
IPHT, …

 Target R&D on single photon detector (>10GHz)

 Open-resonators R&D for higher frequency (Collaboration with 
UW, KAIST)

 Proposal to look for transient axion to photon signals from 
neutron stars



How CAPP is making a difference

 Establish R&D to promote large BW axion scanning including:

 GNOME (axion stars, domain walls,…). CAPP is operational 
and reporting.

 ARIADNE (axion mediated long-range monopole-dipole 
interactions).  Funded by NSF



Busy CAPP hall in pictures
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IBS/CAPP at Munji Campus, KAIST, January 2017.



Woohyun Chung’s slide



CAPP experimental hall, top view



CAPP timeline
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Woohyun Chung’s slide



Woohyun Chung’s slide



Woohyun Chung’s slide



Woohyun Chung’s slide



IBS/CAPP magnet projects

 NI-HTS, 18T, 70mm diam. Delivered Summer 2017 from 
SuNAM. No Insulation (NI) works!

 NI-HTS, 25T, 100mm diam. (BNL) delivery in 2020.

 Insulated LTS (Nb3Sn), 12T, 320mm diam. to be delivered 
in 2020 by Oxford.



Liquid helium type superconducting magnet system at CAPP



CAPP Physics Targets

38



IBS/CAPP Timeline, 1st phase



Potential shown based on single cavities (existing technology only)

1st phase: 0.7-10 GHz, 2nd phase: 10-20 GHz



Potential shown based on single cavities
1st phase: 0.8-10 GHz. 2nd phase: 10-20 GHz



Potential shown based on single cavities: <10 GHz
Technology developed at CAPP for 10-20 GHz



Spinning particles in storage 
rings as high-Q axion detectors
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Axion dark matter and spins in storage rings  

Seung Pyo Chang, Selcuk Haciomeroglu, On Kim, Soohyung Lee, 
Seongtae Park  & Yannis K. Semertzidis, arXiv:1710.05271 [hep-ex]

• Axions dark matter makes a nontrivial  QCD vacuum with oscillating 
pseudoscalar field

• Hadrons in this vacuum acquire oscillating EDM

• Infer axion field amplitude from the dark matter density

• If the axion mass matches a frequency of the spin precession in a storage 
ring the in-plane polarization will rotate into the upright one --- the EDM 
signal

• Scan frequency from 10−9 Hz to 100 MHz varying a combination of E & B 
confining fields in a storage ring and testing axion coupling in the range

• 1013 < fa <1030 GeV.
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https://arxiv.org/abs/1710.05271


Are spins good enough as an axion
detector? 

Encouraging message from the JEDI 
collaboration at COSY@Juelich
• JEDI@COSY: an ensemble of 109 polarized 1 GeV deuterons idly 

precessing in-plane at 120 KHz preserves polarization for longer than 
1500 s.

• JEDI@COSY achievements for maintaining axion resonance condition: 
the idle in-plane precession of spin as a comagnetometer, routine 10-10

precision in the spin tune, 0.15 rad stability of the spin phase during 
whole spin coherence time

• JEDI@COSY --- a pilot search for axions with spin as a detector is in the 
pipeline
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Sensitivity for a 2-year run at a known axion mass
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More and EDM and  baryogenesis
and JEDI @ COSY
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 MDM: allowed by all symmetries, a scale is set by a nuclear magneton 𝜇𝑁

 Trust CPT theorem: EDM is P and T/CP forbidden

 Price for the P-violation: 10−7 , for CP-violation  extra 10−3 from K-decays

 Natural scale 𝒅𝑵 = 𝝁𝑵 × 𝟏𝟎−𝟕 × 𝟏𝟎−𝟑~𝟏𝟎−𝟐𝟒𝒆 ∙ 𝒄𝒎

 The SM: CPV  linked to the flavor change. Pay 10−7 more to neutralize  the flavor change

𝒅𝑵,𝑺𝑴~𝝁𝑵 × 𝟏𝟎−𝟕 × 𝟏𝟎−𝟑 × 𝟏𝟎−𝟕~𝟏𝟎−𝟑𝟏𝒆 ∙ 𝒄𝒎

EDM vs. MDM (learnt from Lev Okun in 60’s)
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• Sakharov (1967): CP violation is imperative for baryogenesis in the Big Bang Cosmology

• EDM as a high-precision window at physics Beyond Standard Model

• nEDM: plans to increase sensitivity by 1 order in magnitude

• pEDM: statistical accuracy of 10−29 is aimed at dedicated all-electric storage rings

• dEDM and pEDM in precursor experiment at COSY: dEDM ~10−20 is within reach?

• Sequel to JEDI: CPEDM & prototype pure electric ring  (at CERN? at COSY?...) --- big international effort, 
CDR under preparation for the fall 2020
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Why: EDM and baryogenesis

observed SM prediction
𝑛𝐵 − 𝑛𝐵

𝑛γ

6.1 ± 0.3 × 10−10 10−18

neutron EDM 
limit (𝑒 ∙ 𝑐𝑚)

3 × 10−26 10−31



• FT-BMT eqn :

•
𝑑  𝑆

𝑑𝑡
= Ω ×  𝑆 𝑡 = −

𝑞

𝑚
𝐺𝐵 +

1

𝛾2−1
− 𝐺  𝛽 × 𝐸 +

1

2
𝜂(𝐸 +  𝛽 × 𝐵) ×  𝑆 𝑡

All-electric ring is ideal for protons (Yu. Orlov, Y. Semetrtzidis et al, srEDM at BNL)

• MDM-term → 0 - “frozen spin” at 𝑝 =700.74 MeV/c

• Longitudinal initial spin

• EDM signal: vertical spin build-up

per turn → π𝜂
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A principle of EDM measurement: spin 
rotation by EDM-interaction with E-fields

MDM EDM 𝑑 =
𝜂ℏ𝑞

2𝑚𝑐

𝐸



2/722.9 GeV COoler SYnchtoron in Juelich, Germany 51

Meanwhile COSY as a Testing Ground

WASA 
polarimeter

EDDA 
polarimeter

Injection

e-cooler

e-cooler

RF Wien filter
equipped with Rogowski 
coils



• Long spin coherence is crucial for high sensitivity to EDM signal
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Spin coherence time

Prerequisite for long SCT: fight a spread of spin frequencies 
• use bunched beam
• decrease beam emittance via electron-cooling
• Betatron oscillations: fine-tune sextupole families to suppress 

chromaticity (old idea by Ivan Koop and Yuri Shatunov (1988))

• JEDI is routinely running at COSY with SCT of 1500 s

• In plane polarization rotation frequency serves as a comagnetometer

stable spin axis  𝑐
 𝑐

time

Inititally all spins aligned Spins decohered - polarization vanishes



• Ideal storage ring (alignment, stability, field homogeneity, no 
systematics)

• high intensity beams (𝑁 = 4 × 1010 per fill)

• polarized hadron beams (P = 0.8) 

• large electric fields (E = 10 MV/m) 

• long spin coherence time (𝜏 = 1000 s) 

• polarimetry (analyzing power A = 0.6, f = 0.005)

a.saleev@fz-juelich.de 53

Ideal experimental setup



• COSY is all-magnetic storage ring, unique for studying spin dynamics 

but still needs upgrades for EDM searches

• Statistical accuracy for 𝑑𝑑 = 10−24𝑒 ∙ 𝑐𝑚 is reachable at COSY

• Systematic effects: horizontal imperfection magnetic fields are evil 

because    MDM >> EDM and MDM rotations give false EDM signal

• JEDI experimental studies of imperfections at COSY : based on a novel 

in situ determination of the spin orientation the MDM background can 

be suppressed to 10−6 level. Further suppression of systematics is 

possible

• COSY as is: EDM ≤ 10−6MDM ≅ 10−20 𝑒 ∙ 𝑐𝑚
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JEDI: EDM searches at COSY



CERN jumping a boat
 Record setting JEDI results are well taken by community and new 

CPEDM collaboration with participation of CERN has been formed in 
2018

 Conceptual Design Report for the prototype all electric 30 MeV proton 
storage ring is under preparation

 Good chances to reach  a sensitivity to the proton EDM of the order of 
10−24𝑒 ∙ 𝑐𝑚

 A future: EDM may become part of CERN Physics Beyond LHC

 Executive summary of the CPEDM proposal is presented  in 

 for an EDM Storage Ring
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Feasibility Study for an EDM Storage Ring, 
arXiv:1812.08535 [physics.acc-ph], Submitted on 20 Dec 2018

CERN Concil Review of European Strategy for 
Particle Physics Update 2018 - 2020

https://arxiv.org/abs/1812.08535


Summary
• Axion-dark-matter efforts are becoming very exciting: 

Cryogenics, High field magnets, High volume-high 
frequency, detectors, …

• A discovery can be announced at any moment (depending on 
the frequency number!)

• Within the next five to ten years we may very well know 
whether axions are 100% of the dark matter… 

• The RF, Quantum-noise limited amplifiers play a major role!

• Complementary EDM and Axion searches with polarized 
particles in storage rings

• Future with storage rings: CPEDM and more?

56



Thank you for your attention !
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Extra Slides
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Axion plans at IBS/CAPP

 Establish lowest cavity temperature (<50mK)

 Develop Microstrip SQUID Amplifiers (MSAs) from KRISS, IPHT, …; JPAs

 R&D on SC cavity w/ B-field

 Single photon detector (>10GHz), based on qubits?

 Open-resonators R&D for higher frequency (Collaboration with UW, KAIST) 

 Neutron stars for signals (and transients?), check it with conventional 
experiment

 srEDM for axion-EDM: spin of particles in a storage ring as a 

substitute for RF cavity



How important are the quantum 
noise limited amplifiers?
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Dil. Refr. installed
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The experimental hall is getting very busy

Several high power dilution refrigerators have been 
procured, installed and are running at mK temps.


