

From COSY to HESR and EDM Storage Ring

M. Bai on behalf of Institut für Kernphysik, Forschungszentrum, Juelich

DPG spring meeting, Technische Universität Darmstadt, March 17, 2016

Outline

- The story of COSY
 - Brief introduction
 - Highlights
 - Accelerator
 - Hadron physics
- COSY current status: ideal cradle for challenging projects
 - FAIR contribution: HESR
 - Towards storage ring based EDM search for charged particles
- Future
 - Dedicated storage ring for EDM
 - Platform for multi-disciplinary basic research
- Summary and Outlook

Member of the Helmholtz Associatior

COSY History

- 1968: Institute of Nuclear Physics at FZJ
 - Nuclei investigation with cyclotron (JULIC)
- 1980s: COSY was proposed to provide higher intensity and resolution for nuclear structure experiments using light ion beams from JULIC [S. A. Martin et al, NIM A236 (1985) 249-255]
- 1988: COSY foundation, construction started
- 1993: 1st circulating proton beam was achieved at injection

First stored p beam at injection energy

COoler SYnchrotron

JÜLICH FORSCHUNGSZENTRUM

- Circumference: 184 m
- Species: protons, deuterons including polarized beams
- Maximum beam momentum:
 - 3.65 GeV/c
- For experiments with internal target as well as and beams in the extraction beamlines
- Equipped with both stochastic beam cooling as well as electron beam cooling
- Cyclotron also produces medical isotopes for research

JULIC: COSY injector

Designed by AEG, 1st beam in 1968

- Pole diameter: 3.3m/700 Tons iron
- _{max}=1.35 Tesla, B_{hill}=1.97 Tesla
- 3 ion sources, including polarized ion source
- Together with Big-Karl spectrometer, was the working horse for nuclear physics until COSY
- Upgraded for COSY in 1990
- Still provides excellent service for COSY, as well as nuclear medicine research etc

routinely 45 MeV H⁻ and 75 MeV D⁻ for COSY with 20 ms stripping injection/cycle

Courtesy of R. Gebel

- Negative polarized H-/D- source
 - 45/35 μA H- / D- output
 - ~92% beam polarization in COSY

DPG Spring Meeting, 2016

ILICH

Electron cooling

- constructed between 1988 -1993
- 2m long with electron energy from 24.5 -100 keV
- electron beam current: \leq 4 A
- electron cathode size: 2.54 cm
- was the working horse for internal target experiments: WASA, ANKE, etc

2 MeV electron cooler development

Design parameters

- Energy range: 0.025 2 MeV
- High voltage stability: < 10⁻⁴
- Electron current: up to 3 A
- Electron beam diameter: 10 30 mm
- Cooling section length: 2.7 m
- Toroid radius: 1 m
- Cooling section solenoid: 0.5 2 kG

Courtesy of V. Kamerdzhiev

Proton energy, MeV Electron energy, MeV Max. electron current, A 200 0.109 0.5 353 0.192 0.5 580 0.316 0.3 1670 0.908 0.9

Currently achieved

- Stochastic cooling at COSY
 - Transverse betatron cooling
 - Longitudinal cooling using notch filter technique
 - Effective from beam energy 1.5 GeV/c to 3.7 GeV/c
 - Bandwidth: 1-3 GHz
- Stochastic cooling for HESR
 - Novel compact design of pickup/kicker
 - ring-slot coupler
 - bandwidth of 2-4 GHz
 - high sensitivity
 - fixed aperture

Courtesy of H. Stockhorst

Pickup/Kicker Ring Slot Coupler

- Was prototyped and tested at COSY and Nuclotron (JINR)
 - 2x10⁹ Deuteron beam
 - Beam energy at 3 GeV
 - Cooling time 480 sec

R. Stassen, H. Stockhorst, et al

Member of the Helmholtz Association

- Polarized beam manipulation
 - RF solenoid to achieve full spin flip, as well as the tool to place spin into horizontal plane

Highlight of Physics Results of COSY

For a long time, physicists were only able to reliably verify two different classes of hadrons: baryons and mesons. Experiments performed at Jülich's accelerator COSY have now shown that, in fact, another class of exotic particles made up of six quarks exists.

Highlight of Physics Results of COSY

A. Wrońska,³ P. Wüstner,^{14,12} P. Wurm,^{11,12} A. Yamamoto,²⁵ L. Yurev,^{24,§} J. Zabierowski,²⁶ M. J. Zieliński,³ A. Zink,¹⁵ J. Złomańczuk,¹ P. Żuprański,² and M. Żurek^{11,12}

(WASA-at-COSY Collaboration)

Highlight of Physics Results of COSY

more details can be found in the first two presentations in HK64 session on Mar. 18

Polarization of a Stored Beam by Spin-Filtering

Antiproton-ProtonScattering Experiments with Polarization (PAX) http://collaborations.fz-juelich.de/ikp/pax/

- Motivation: innovative technique for establishing polarized antiproton beam
- Proof-of-Principle at COSY to polarize circulating proton beam with a polarized gas target

un-polarized protons stack injected in COSY at 45 MeV followed up a quick acceleration to 49.3 MeV

From COSY to HESR

	Circumference	Energy range	Species
COSY	184m	0.3 ~ 3.7 GeV/c	Proton/deuteron
HESR	575m	1.5 ~ 15 GeV/c	Antiproton, heavy ion

HESR Challenges

- Design to achieve high resolution and high luminosity for internal target operation
 - Anti-proton
 - Accumulating beam from Collector Ring (CR) at injection energy 3 GeV
 - Deceleration to 1 GeV (cooling at 2 GeV, 25 s)
 - Energy compensation for internal target experiment
 - Heavy ion
 - Injection at 740 MeV/u
 - Energy compensation for internal target
 - experiment up to 5 GeV/u

HESR Challenges:

M. Bai

high resolution and high luminosity for internal target operation

- Antiproton accumulation: direct injection from Collector Ring (CR)
 - Longitudinal stack with moving barrier bucket is favored over the conventional radial stacking technique (AD@CERN, FNAL)
 - Save space, and also eliminate the needs of dedicated cooling for injection as well as for stacking
 - PoP was demonstrated in SIS18@GSI [M. Steck et al, Cool'11]

HESR Challenges

- Beam cooling
 - Stochastic cooling
 - Needs to cover entire energy range
 - compact design and large bandwidth
 - 2-4 GHz first
 - 4-6 GHz 2nd if necessary
 - High sensitivity with fixed aperture
 - High energy electron cooling
 - With conventional un-bunched electron beam cooling, 8 MeV electron beam is required to cover the energy range of HESR

COSY as a test bed for FAIR

- Beam cooling
- Beam instrumentation

A. Halama, AKBP 12: Beam Diagnostics I, 17. März 2016, 14:15–14:30, S1/05 23

EDM search at COSY

- What is EDM? And Why?
- Describes the separation of positive and negative charge inside a particle
- It aligns along the spin axis of the particle, and violates both parity (P) and time reversal (T)
- Hence, significant EDM measurement of fundamental particles is an effective probe of CPviolation, could be the key to explain the asymmetry between matter and antimatter

Status of EDM search

Member of the Helmholtz Association

Storage ring based EDM search

- Only way to have direct access to charged particle's EDM
 - Spin motion in a planar-circular accelerator

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m}\vec{S} \times \left[G\gamma \vec{B}_T + (1+G)\vec{B}_L + \left(G - \frac{\gamma}{\gamma 2 - 1}\right)\frac{\vec{E} \times \vec{\beta}}{c} + d\left(\vec{E} + \vec{\beta} \times \vec{B}\right)\right]$$

Spin tune: # of spin precession in a orbital revolution

Storage ring based EDM search

- Only way to have direct access to access charged particle's EDM
- Spin frozen method

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m}\vec{S} \times \left[G\gamma \vec{B}_T + (1+G)\vec{B}_L + \left(G - \frac{\gamma}{\gamma 2 - 1}\right)\frac{\vec{E} \times \vec{\beta}}{c} + d\left(\vec{E} + \vec{\beta} \times \vec{B}\right)\right]$$

- Null to remove the MDM contribution to spin motion. And then place spin vector along the particle's velocity in the horizontal plane
 - If no EDM, the spin vector is glued to the horizontal plane
 - Non-zero EDM results in the vertical polarization buildup

mholtz Associatior

Member of the

Storage ring based EDM search

• Spin frozen method

$$\frac{d\vec{S}}{dt} = \frac{e}{\gamma m}\vec{S} \times \left[\boldsymbol{d}\left(\vec{\boldsymbol{E}} + \vec{\boldsymbol{\beta}} \times \vec{\boldsymbol{B}}\right)\right]$$

- In the absence of systematic errors, vertical spin buildup rate is proportional to the size of the EDM, as well as the strength of the Lorentz force
 - Spin frozen storage ring: most efficient way!
- Long spin coherence time
 - to reach 10^{-29} e-cm measurement within a year T_{tot}= 10^7 sec,

 $T_{spin} \ge 1000sec$ is needed

Storage Ring based EDM challenges

- Long spin coherence time
- Fast polarimeter with high efficiency
 - Measure the spin buildup due to EDM signal
 - Spin manipulation
- Monitor/mitigate systematic fake EDM signals due to various sources of un-wanted fields
 - > a radial magnetic field of $B_r = \frac{d}{\mu}E_r$ produces the same signal as radial E field of E_r
 - Can be mitigated by CW-CCW rotating beams
 - Requires not only state of the art of quality control of the magnetic/electric fields, but also high precision beam monitoring/control

Long history of polarized beams

Polarized protons and deuterons

Excellent beam cooling setups for spin manipulations

In house expertise with international collaborations

- Juelich Electric Dipole moment Investigation
 - a total of 118 collaborators from

BELARUS, BELGIUM, CHINA, FRANCE, GEORGIA GERMANY ITALY, KOREA, POLAND, RUSSIA, SWEDEN UNITED KINGDOM, USA

EDM @ COSY

- High efficiency polarimeter
 - Enables the investigation of spin coherence

10cm UP DOWN RIGHT

Azimuthal angles yield two asymmetries:

$$\varepsilon_{EDM} = \frac{L-R}{L+R}$$
 $\varepsilon_{g-2} = \frac{D-U}{D+U}$

2

typical depth ~ 0.2 mm

double-hit extraction?:

Stephenson,

Ш of

Courtesy

EDM @ COSY

- Achieved long spin coherence time with deuteron beams
 - Beam momentum: ~970 MeV/c. Beam intensity: ~10⁹
 - pre-cooled with COSY 100 keV e-cooler for ~75 sec
 - All sextupole (3 families) were adjusted to minimize both horizontal and vertical chromaticity

EDM @ COSY

High precision spin tune measurement

Spin tune v_s determined to $\approx 10^{-8}$ in 2 s time interval, and in a 100 s cycle at $t \approx 40$ s to $\approx 10^{-10}$ (PRL 115, 094801 (2015)

High precision measurement and observation of accelerator stability

- Observed the change of spin tune from cycle to cycle
 - Indication of the machine reproducibility
 - Why the difference between the two spin state?

EDM precursor experiment @ COSY

55.

• Partial spin frozen with RF Wien-filter

Challenges with precursor

Imperfection of the machine tilts stable spin direction away from vertical. Excluding other systematics, rms c.o ~ 100 μ m puts the precision limit ~ 5x10⁻¹⁸ e-cm

Challenges with precursor

Imperfection of the machine tilts stable spin direction away from vertical. Excluding other systematics, rms c.o \sim 100 μ m puts the precision limit \sim 5x10⁻¹⁸ e-cm

- COSY BPM upgrade are in working progress (C. Boehme, V. Kamerdzhiev) reviewed by BI experts from GSI, CERN and DESY
- Implemented automation of ORM data taking (F. Hinder, M. Simon)
- Implemented ORM based optics measurement (D. Ji [IHEP])

Summary

- COSY served nuclear physics as the working horse for over two decades with outstanding physics[1], as well as many excellent PhD students
 - [1] C. Wilkin et al, The legacy of the Experimental Hadron Physics program at COSY, EPJ Review, to be submitted
- It has been evolved to a test bed for HESR, and challenging projects like EDM search in a storage ring
- In addition, COSY has become a facility for the precision frontier physics experiments
 - EDM precursor experiment: first direct measurement of deuteron
 - Antiproton-Proton Scattering Experiments with Polarization (PAX)
 - http://collaborations.fz-juelich.de/ikp/pax/
 - Time-Reversal Invariance at COSY (TRIC)
 - https://apps.fz-juelich.de/pax/paxwiki/index.php/Test_of_Time-Reversal_Invariance_at_COSY_(TRIC)

Outlook

- With all the above, we hope we convince you that COSY as a unique machine still has potential for a bright future. (there are many older machines that still serve)
 - Direct charged particle EDM search in a storage ring
 - Ideal test bed for the future success of one of the major scientific cases at FAIR
 - Education of beam physics, and beam manipulation
 - Compare to current operational high energy accelerators, COSY has the beauty of being very accessible to students etc
 - Multi-disciplinary capabilities for basic research in other scientific fields

Extending COSY Capability

- COSY has been a dedicated accelerator for hardon physics till now
- It has demonstrated its versatile operational modes: internal target, energy range, extracted beam. Its full potential still waits to be fully explored
 - Increase average beam current in the extraction beamlines
 - Beam request from INM-5 on radionuclide study at COSY: > 10 nA
 - additional ion species
 - others

INM-5 target station at JULIC, COSY injector

- As one of the few hadron synchrotrons in Germany, it can also benefit the scientific community with its unique features
 - Nuclear medicine research
 - Radiobiology basic research
 - Important for radiotherapy
 - Nasa Space Radiation Lab @ BNL

Outlook

- With all the above, we hope we convince you that COSY as a unique machine still has potential for a bright future. (there are many older machines who still serves)
- In reality, am afraid that COSY's future together with the the physics programs of IKP beyond 2018 are in jeopardy due to the ongoing Strategy Process at FZJ
- We are still fighting for our future at FZJ. Stay tuned!
- We appreciate you in supporting us to reach out to the society about
 - the importance of fundamental research in Germany
 - the long term impact to German physics research including accelerator community