

28.02.2018 | Maria Żurek for JEDI Collaboration Forschungszentrum Jülich, Institut für Kernphysik



Mitglied der Helmholtz-Gemeinschaft



# **Motivation**

### **Baryon Asymmetry Problem**

|                                        | Standard Model     | Observed            |
|----------------------------------------|--------------------|---------------------|
| $\frac{n_B - n_{\bar{B}}}{n_{\gamma}}$ | $\approx 10^{-18}$ | $6 \times 10^{-10}$ |

Preconditions needed to explain it:

- Baryon number violation
- C and CP violation
- Thermal non-equilibrium in the early Universe



Sakharov (1967)

# Motivation

### **Baryon Asymmetry Problem**

- Electroweak sector (CKM matrix well established) → First observation: 1964 decay of the neutral K meson
- Strong Interactions (so called θ-term)
  - $\rightarrow$  Not observed experimentally yet (it is very small)
  - $\rightarrow$  Strong CP puzzle

# Predictions orders of magnitude too small to explain the observed matter-antimatter asymmetry!

New sources of CP violation Beyond Standard Model needed!

They can manifest in Electric Dipole Moments of particles

### **Motivation** Electric Dipole Moment

# Classically

Charge × displacement

### **In Quantum Mechanics**

Operator  $\mathbf{d} = q\mathbf{r}$ 

Only available quantization axis is the spin  $\mathbf{s} = s\mathbf{\sigma}$  (there can be only one vector in a quantum system)

### $\mathbf{d} = \mathbf{d}\boldsymbol{\sigma}$

• **d** ||  $\sigma$  and  $\mu$  ||  $\sigma$  (magnetic moment)





 $\mu$  – magnetic dipole moment

d – electric dipole moment

# **EDM – CP violation**

The observable quantity:

- Energy of electric dipole in electric field
- Energy of magnetic dipole in magnetic field



T violation  $\rightarrow$  CP violation (since CPT conserved)







# **Measurement principle**

For charged particles:

 $\rightarrow$  apply electric field in a storage ring

Simplified case:



 $\frac{d\vec{S}}{dt} \propto \frac{d\vec{E}}{\vec{E}} \times \vec{S}$ 

Build-up of vertical polarization by slow precession

Extremely small effects!

With edm ~  $10^{-29} e \cdot cm$ effect of the order of µdeg/hour

"Frozen spin"

# **Measurement principle**

### Thomas-BMT equation:

In storage rings (magnetic field – vertical, electric field - radial)



Magnetic moment causes fast spin precession in horizontal plane

- $\mathbf{\Omega}$ : angular precession frequency
- G: anomalous magnetic moment

- d: electric dipole moment
- γ: Lorentz factor

### Measurement

### Pure magnetic ring

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} \left(\vec{E} + c\vec{\beta} \times \vec{B}\right) \right\} \times \vec{S}$$

**COSY:** pure magnetic ring, polarized protons and deuterons access to EDM via motional electric field  $\vec{\beta} \times \vec{B}$ 

### Starting point for a proof-of-principle experiment

# **Research and Development at COSY**

http://collaborations.fz-juelich.de/ikp/jedi/

EDMs of charged hadrons: p, d

JEDI



# **Research and Development at COSY**



- Measurement of fast precessing polarization Phys. Rev. ST Accel. Beams 17, 052803 (2014)
- Precise determination of spin tune Phys. Rev. Lett. 115, 094801 (2015)
- Spin coherence time
   Phys. Rev. Lett. 117, 054801 (2016)
- Phase lock of spin precession
   Phys. Rev. Lett. 119, 014801 (2017)
- Dedicated polarimetry  $\rightarrow$  D. Shergelashvili (HK 36.6) and F. Müller (HK 36.7) talks
- Beam instrumentation  $\rightarrow$  F. Abusaif (HK 41.3) talk
- Wien filter commissioning
- Database for future polarimetry

# **Measurement in COSY**

### **Pure magnetic ring**



horizontal precession

# **Measurement RF Wien Filter method** $\begin{array}{c} \text{horizontal}\\ \text{precession}\\ \vec{p}\\ \vec$

Wien Filter: introduces B and E field oscillating with radio frequency

Lorentz force vanishes: no effect on EDM rotation

Effect: Adds extra horizontal precession



Wien Filter has to be always in phase with the horizontal spin precession!

**Feedback system developed and tested**: Phys. Rev. Lett., 119, 014801 (2017) Resonant frequency controlled, precession of spin phase locked

# **Wien Filter Commissioning**



# Wien Filter Commissioning – 90° mode

### Spin rotations with phase lock



Spin build-up as a function of phase ~  $sin\Delta \phi \rightarrow Feedback system works properly!$ 

# Wien Filter Commissioning – 0° mode

### Spin rotations with phase lock



#### We see vertical polarization buildup $\rightarrow$ EDM-like signal

Two systematic contributions:

- 1. Residual, radial magnetic field from WF
- $\rightarrow$  effect equivalent to WF rotation

#### 2. Field imperfections in COSY

- $\rightarrow$  transverse contribution: equivalent to WF rotation
- $\rightarrow$  longitudinal contribution: equivalent to additional static solenoid field

#### The measurement shows the stability of COSY conditions within 24 hours

Reaction: dC elastic scattering

Up/Down asymmetry  $\propto$  horizontal component of polarization  $P_x$ Right/Left asymmetry  $\propto$  vertical component of polarization  $P_y$ 



**Motivation:** database to produce realistic Monte Carlo simulations of detector responses for a polarimeter designed for EDM

**Goal:**  $A_y$ ,  $A_{yy}$ ,  $d\sigma/d\Omega$  for  $\rightarrow$  dC elastic scattering

 $\rightarrow$  main background reactions (deuteron breakup)



#### Beamtime in November 2016 (2 weeks)

**d energies:** 170, 200, 235, 270, 300, 340, 380 MeV **Targets:** C and CH<sub>2</sub>

**Beam polarization:** 5 polarization states  $(P_y, P_{yy}) = (0,0), (-\frac{2}{3},0), (\frac{2}{3},0), (\frac{1}{2}, -\frac{1}{2}), (-1, 1)$ 

Setup: Modified WASA Forward Detector









### Conclusions

- EDMs of elementary particles key for understanding sources of CP violation
   → explanation of matter – antimatter imbalance
- Principle of experiments measurements of spin precession in magnetic field
- EDM of charged particles measured in storage rings
- COSY: ideal starting point for R&D and a pre-cursor experiment with Wien Filter method

# Backup

# **Fundamental Discrete Symmetries**

A physical model is symmetric under a certain operation  $\rightarrow$  if its properties are invariant under this operation

- T-symmetry:  $t \rightarrow -t$
- P-symmetry:  $\mathbf{r} \rightarrow -\mathbf{r}$
- C-symmetry: particle-antiparticle interchange
- CPT conserved

|                         | С  | Ρ  | Т  | CP |
|-------------------------|----|----|----|----|
| Electric field E        | -E | -E | Е  | Е  |
| Magnetic field <b>B</b> | -B | В  | -B | -B |
| Momentum <b>p</b>       | р  | -р | -р | -р |
| Angular momentum I      | I  | I  | -I | I  |
| Charge density q        | -q | q  | q  | -q |

# **EDM – Orders of magnitude**



nEDM of 10 <sup>-26</sup> e  $\cdot$  cm  $\rightarrow$  separation of u from d quarks of ~ 5  $\cdot$  10 <sup>-26</sup> cm

# **Motivation**

### **Electric Dipole Moment of proton and deuteron**

### No direct measurement **Disentangle the fundamental source(s)** of EDMs



### **Experimental requirements**

| High precision storage ring | alignment, stability, field homogeneity |
|-----------------------------|-----------------------------------------|
| High intensity beams        | $N = 4 \times 10^{10}$ per fill         |
| Polarized hadron beams      | P = 0.8                                 |
| Large electric fields       | E = 10 MV/m                             |
| Long spin coherence time    | т = 1000 s                              |
| Polarimetry                 | analyzing power A = 0.6, acc. f = 0.005 |

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \implies \sigma_{\text{stat}}(1 \text{ year}) \approx 10^{-29} e \text{cm}$$

### Challenge: systematic uncertainties on the same level!

Even in Pure Electric Ring – lots of sources of syst. uncertainties  $\rightarrow$  Very small radial B field can mimic an EDM effect  $\mu B_r \sim dE_r$ 

### **Measurement**

### **Pure electric ring**

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$
$$\equiv 0!$$

"frozen spin" : precession vanishes at magic momentum

$$G = \frac{1}{\gamma^2 - 1} \Longrightarrow p = \frac{m}{\sqrt{G}}$$

only possible for G > 0

### **Dedicated ring for protons**

### Storage rings: combined ring

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} \left(\vec{E} + c\vec{\beta} \times \vec{B}\right) \right\} \times \vec{S}$$

", frozen spin": proper combination of  $\vec{B}$ ,  $\vec{E}$  and  $\gamma$  also for G < 0 (i.e. deuterons, <sup>3</sup>He)

### **Combined ring both for protons and deuterons**

# **Polarimetry**

# **Detector signal** $N^{up,down} = 1 \pm PA \sin(2\pi \cdot f_{prec}t)$ $= 1 \pm PA \sin(2\pi \cdot v_s n_{turns})$ P: polarisation, A: analysing power

#### Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA\sin(2\pi \cdot \upsilon_s n_{\text{turns}})$$

#### Challenges

- precession frequency  $f_{\text{prec}} \approx 120 \text{ kHz}$
- $v_s \approx -0.16 \rightarrow 6 \text{ turns / precession}$
- event rate  $\approx$  5000 s<sup>-1</sup>  $\rightarrow$  1 hit / 25 precessions
  - $\rightarrow$  no direct fit of the rates

# **Polarimetry**

### **Detector signal** $N^{up,down} = 1 \pm PA \sin(2\pi \cdot f_{prec}t)$ $= 1 \pm PA \sin(2\pi \cdot v_s n_{turns})$ P: polarisation, A: analysing power

#### Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA \sin(2\pi \cdot v_s \, n_{turns})$$

Too few polarimeter events to resolve oscillation directly!

Map many events to one cycle Phys. Rev. ST Accel. Beams 17, 052803 (2014)

## **Polarimetry**

beam revolutions: counting turn number n  $\downarrow$ assign turn number  $n \rightarrow$  phase advance  $\varphi_s = 2\pi v_s n$   $\downarrow$ for intervals of  $\Delta n = 10^6$  turns:  $\varphi_s \rightarrow \varphi_s \mod 2\pi$  $\downarrow$ 

scan  $v_s$  in some interval around  $v_s = \gamma G$ 



M. Żurek - JEDI recent results

# **Spin tune measurement**

Monitoring phase of asymmetry with fixed spin tune





# **Spin coherence time**





At the beginning all spin vectors aligned  $After some time spin vectors all out of phase Polarization vanishes <math>\rightarrow$  measurement time limited

$$\frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta \nu}{\nu} \implies \Delta \varphi \approx 60 \text{ rad/}_{s}$$

• unbunched beam:  $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \implies$  decoherence in < 1s

- bunching: eliminate effects on  $\frac{\Delta p}{p}$  in 1<sup>st</sup> order  $\rightarrow \tau \approx 20$  s
- correcting higher order effects using sextupoles and (pre-) cooling  $\rightarrow \tau \approx 1000 \text{ s}$

## **Spin coherence time**



# **Controling spin direction**

#### Feedback system

Goal: Maintain resonance frequency and phase between spin precession and Wien filter

- $\rightarrow$  keep precession frequency stable
- $\rightarrow$  match frequency and phase to Wien filter

Test at COSY:

control spin tune via COSY rf:

 $\nu_s = G\gamma$ 

control phase to external frequency by accelerating/decelerating spin precession



PRL, 119, 014801 (2017)



# **Wien Filter Commissioning**

### **Detuned WF: residual Lorentz force**

Tuned WF: Lorenz force vanishes

**Detuned WF**: residual Lorentz force excites beam at WF frequency  $\rightarrow$  Lock-in amplifier connected to BPMs measures amplitude of beam oscillations



