Search for Electric Dipole Moments at COSY in Jülich
Closed-Orbit and Spin Tracking Simulations

V. Schmidt, Institut für Kernphysik 4, Forschungszentrum Jülich, 52425 Jülich, Germany,
also at III. Physikalisches Institut B, RWTH Aachen University

Motivation

Basic idea of measuring an EDM:
- Inject particles with \(\vec{p} \parallel \vec{S} \)
- Apply radial electric field
- For \(\vec{d} \neq 0 \): spin rotates out of horizontal plane
- Measure: build-up of vertical polarization \((\phi \propto |\vec{d}|) \)

\[
\frac{d\vec{S}}{dt} = \vec{S} \times \vec{H}_{\text{MDM}} + \vec{S} \times \vec{H}_{\text{EDM}}
\]
\[
\vec{\mu} = 2(G + 1) \cdot \frac{e}{2m} \vec{S}
\]
\[
\vec{d} = n \cdot \frac{e}{2mc} \vec{S}
\]

Wien filter method

- Vertical fields
- \(\vec{S} \parallel \vec{p} \)
- Spin rotates in horizontal plane
- \(\vec{d} \neq 0 \): vertical spin build-up

without Wien filter: No net EDM effect
with Wien filter: Net EDM effect

Misalignment of quadrupoles

- Disturbed closed-orbit due to QP misalignment
- Spin sees radial magnetic field
- Radial magnetic fields lead to vertical spin build-up

Invariant spin axis

- Determine best-fit plane and find average spin rotation axis
- 300 sets of random quadrupole misalignments
- Calculate invariant spin axis for each setting
- \(\text{RMS}_{xz} \approx 0.001 \)
 \(\Rightarrow \sigma_{\text{EDM}} = 3 \cdot 10^{-18} \text{ e } \cdot \text{cm} \)
- Horizontal projection of invariant spin vectors
- Vertical component close to 1.0
- Small deviations in horizontal plane