PRESTO A pathfinder Facility for a new class of PREcision physics STOrage rings

Paolo Lenisa

University of Ferrara and INFN (Italy)

TIARA Meeting, March 29th 2022

Introduction

- The experimental activity of the JEDI Collaboration at the COSY storage rings in the past years has resulted in fundamental achievements:
 - Spin-coherence time > 1000 s
 - Spin-tune measurement with unprecedented precision $\Delta
 u_s /
 u_s \leq 10^{-10}$
 - Implementation of a spin-feedback system

Introduction

- The experimental activity of the JEDI Collaboration at the COSY storage rings in the past years has resulted in fundamental achievements:
 - Spin-coherence time > 1000 s
 - Spin-tune measurement with unprecedented precision $\Delta
 u_s /
 u_s \leq 10^{-10}$
 - Implementation of a spin-feedback system
- The activity culminated with the first upper limit for the deuteron EDM, the first direct measurement of the EDM of a charged hadron in a storage ring
 - Milestone for the field and experimental validation of the method

Introduction

- The experimental activity of the JEDI Collaboration at the COSY storage rings in the past years has resulted in fundamental achievements:
 - Spin-coherence time > 1000 s
 - Spin-tune measurement with unprecedented precision $\Delta
 u_s /
 u_s \leq 10^{-10}$
 - Implementation of a spin-feedback system

The activity culminated with the first upper limit for the deuteron EDM, the first direct measurement of the EDM of a charged hadron in a storage ring
 Milestone for the field and experimental validation of the method

COSY will stop running in 2024

• The JEDI and CPEDM collaborations agreed upon the strategy for the next steps

Present status: CERN Yellow Report

F. Abusaif et al.: Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study: https://arxiv.org/abs/1912.07881.

P. Lenisa (Univ. Ferrara and INFN)

Strategy: staged approach

Staged approach

After finalizing Stage 1 at COSY, the necessary next step will be a prototype ring:

Stage 2: prototype EDM storage ring

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Stage 2: prototype EDM storage ring

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage time
- CW-CCW operation
 Orbit control
 - Control of orbit difference
- Polarimetry
- Spin-coherence time
- Magnetic moment effects
- Stochastic cooling

Objectives of PTR

- Study open issues.
- First direct proton EDM measurement.

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 707 MeV/c)

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 707 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual B_r fields

"Holy Grail" storage ring (largest electrostatic ever conceived)

P. Lenisa (Univ. Ferrara and INFN)

Design Study

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: τ = 1000 s
- Large electric fields: E ~ 8 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from unwanted magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: τ = 1000 s
- Large electric fields: E ~ 8 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of data taking:

•
$$\sigma_{stat} = \frac{\hbar}{\sqrt{Mt} \tau PAF} \Rightarrow \sigma_{stat} = 2.6 \times 10^{-29} e \cdot cm$$

Experimentalist's goal: provide σ_{syst} to the same level.

Systematics

Example: radial B field (*B_r***)**

• B_r can mimic EDM (if $dE_r \approx \mu B_r$)

• E.g.
$$d = 10^{-29} \text{ e} \cdot \text{cm}, E_r = 10 \text{ MV/m}$$

Corresponds to
$$B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$$

Systematics

Example: radial B field (B_r)

• B_r can mimic EDM (if $dE_r \approx \mu B_r$)

Corresponds to
$$B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$$

Solution

- Use of two beams running clockwise and counterclockwise
- Separation of the two beams sensitive to B_r

Research Infrastructure Concept Development:

Pathfinder facility for a new class of PREcision-physics STOrage rings " (PRESTO)

Framework

INFRADEV-01-01-2022 - Concept Development

- Application deadline: 20.04.22
- Duration: 4 years
 - Project development: 2023-2026
- Budget: total 3 M euro
- Coordinator + 7 beneficiaries
 - INFN (Coord.) (Italy)
 - CERN
 - RWTH-Aachen (Germany)
 - GSI (Germany)
 - MPI-HD (Germany)
 - Univ. Liverpool (United Kingdom)
 - Univ. Krakow (Poland)
 - Univ. Tbilisi (Georgia)

1 - Excellence

Science case

- Search for static charged particle EDMs
 - EDMs \rightarrow new probes of CP-violating interactions
 - Matter-antimatter asymmetry
- Search for oscillating EDMs
 - Axion-gluon coupling
 - Dark matter search
- Sensitivity to gravitational effects

Objectives

- New class of (precision) storage rings (p: all-E; d, ³He: comb. E/B);
- design demonstrator as: key performance enabler for the final precision storage ring;
- capable of providing a wealth of science already.

2 - Impact

3 - Implementation

WP#	Item	PM_ tot	PM detail	Institutions	Objectives
1	Project coordination	15	15	INFN INFN	
2	Ring design 1. Machine lattice 2. Beam transfer system	48	18 18 6 6	CERN CERN MPG CERN MPG	report report
3	Bernents I. Electrostatic bends 2. Electrostatic multipole elements 3. Magnetic bends 4. Injection hardware 1. Vacuum system	84	24 24 9 12 9 6	INFN RWTH-IAEW MPG CERN RWTH-IAEW CERN INFN	report report report report report
4	Beam diagnostics and instrumentation 1. Beam position monitors, incl phase-space detection (Roggowski type) 2. Beam profile grsggm monitor 3. RF cavity 4. Stochastic cooling 5. Magnetic shielding 6. Alignment and metrology of elements	36	6 6 6 6 6 6	GSI GSI CERN GSI GSI CERN	repoit repoit repoit repoit repoit
5	Polarimetry and spin munipulation tools 1. Beam polarimeter 2. RF solenoid 3. RF Wen filter	78	48 24 3 3	LIV LIV TSU GSI GSI	report report report
6	Parameter control and expected performance 1. Systematics investigations 2. Spin tracking 3. Error evaluation 4. Data acquisition and management	78	6 12 24 24 12	RWTH-PHIB CERN RWTH-PHIB JAG TSU INFN	report report report report
7	Cost estimate	12	12	INFN INFN	report
8	Dissemination and outreach	36	24 12	JAG JAG INFN	publications, meetings, talks etc.

P. Lenisa (Univ. Ferrara and INFN)

WP Description

• Momentum and ring radius for proton in frozen spin condition

Two options:

• Pure electric ring: p = 707MeV, bending radius ≈ 50 m at E=8 MV/m

★ combined prototype ring: p = 300 MeV, bending radius \approx 9 m at E=7 MV/m

PTR lattice design for protons

- p at 30 MeV all-electric CW-CCW beams operation
- p at 30 to 45 MeV frozen spin, with additional vertical B field
- relates to full scale 232.8 MeV proton EDM ring

F D F		E only	E 8	ιB	unit
0			trozer	i spin	
← 8 m→	Bending radius	8.86	8.	36	m
	Kinetic energy	30	30	45	MeV
29 m	$\beta = \mathbf{v}/\mathbf{c}$	0.247	0.247	0.299	
î Þ Þ	γ (kinetic)	1.032	1.032	1.048	
LE FA	Momentum	239	239	294	MeV/c
	Electric field E	6.67	4.56	7.00	MV/m
cw	Magnetic field B		0.0285	0.0327	Ť
	rms $\epsilon_x = \epsilon_y$	1	1		π mm mrad
Curgenhor from	Transv. acc. $a_x = a_y$	> 10	>	10	π mm mrad

Scalable modular design

- Beam transfer and injection
 - Development of a proper injection concept.

- Beam transfer and injection
 - Development of a proper injection concept.

• Test at COSY: spin manipulation after injection feasible

Electrostatic deflectors & magnetic bends

- Concept for electrostatic deflector available
- Next step: build prototype with RWTH Aachen

		units
Electric		
electric field	7.00	MV/m
gap between plates	60	mm
plate height (straight part)	151.5	mm
plate length	6.959	m
total bending length	55.673	m
total straight length	44.800	m
bend angle per unit	(45°)	m

Electrostatic deflectors & magnetic bends

- Concept for electrostatic deflector available
- Next step: build prototype with RWTH Aachen

		units
Electric		
electric field	7.00	MV/m
gap between plates	60	mm
plate height (straight part)	151.5	mm
plate length	6.959	m
total bending length	55.673	m
total straight length	44.800	m
bend angle per unit	(45°)	m

- Concept for magnetic add-on to deflector available.
- Magnetic system $(\cos\theta)$ outside the vacuum tube.

Magnetic		
magnetic field	0.0327	Т
current density windings/element	5.000 60	A/mm ²

Matching of E and B stray fields.

- Global matching based on field integrals
- Local matching: stacking electrodes

distance along the trajectory [mm]

Multipole elements

- Design of electrostatic elements (CERN)
- Electrostatic quadrupoles
 - aperture diameter 80mm, applied \pm 20 kV.
 - Simulated design with vacuum chamber of 400mm diameter.

PTR quadrupoles max. pole tip potential 30 kV (margin for conditioning)

- 3D design available;
- sextupole, octupole and higher harmonics reasonable

Vacuum system

- Ring vacuum given by minimum required beam lifetime of about 1000 s.
 - N_2 pressure $< 10^{-12}$ mbar; H_2 pressure $< 5 \times 10^{-11}$ mbar.
- Stochastic cooling rate better than 5×10^{-3} mm mrad/s.
 - Validation required
- Non-vibrational system that avoids generation of magnetic fields
 - Cryogenic or NEG pumping?
- Mechanical alignment of elements inside vacuum pipe of 400 mm diameter
 - active compensation of oscillations/ground motion
- Shielding (passive versus active)

WP4 - Beam diagnostics and instrumentation

Development of compact BPM based on Rogowski coil

• Main adv.: short install. length (\approx 10 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length > 20 cm
- Resolution \approx 100 μ m

Rogowski BPM (warm)

- Excellent RF-signal response
- Length = 1 cm
- Resolution \approx 1.25 μ m

Advantages over conventional split-cylinder BPMs

- short insertion length: many BPMs can be installed
- inexpensive
- high sensitivity to position of bunched beams

P. Lenisa (Univ. Ferrara and INFN)

Design Study

WP4 - Beam diagnostics and instrumentation

Stochastic cooling

- Control proton beam emittance during measurements: 30 MeV to 45 MeV.
- Cooling should compensate emittance growth of 5×10^{-3} mm mrad/s.
 - Interplay between stochastic cooling and evolution of horizontally polarized ensemble of particles unknown.
 - Studies of emittance growth and spin coherence time at PTR.
- Aim: provide basic design of stochastic cooling system for PTR.

WP4 - Beam diagnostics and instrumentation

RF-cavity

- Azimuthal magnetic fields lead to spin rotations of the magnetic moment.
- Even for perfectly aligned cavity, individual particles experience horizontal magnetic fields and spin rotations into vertical and horizontal directions.
- Effect on EDM measurement suppressed
- Design of RF cavity required that minimizes unwanted spin rotations.

WP5 - Polarimetry and spin manipulation tools

Polarimetry: noise extraction

• dC (pC) scattering works with polarization errors $\delta p/p = 10^{-6}$

WP5 - Polarimetry and spin manipulation tools

Polarimetry: noise extraction

• dC (pC) scattering works with polarization errors $\delta p/p = 10^{-6}$

Polarimetry: sample polarimeter

Polarization profile determination at low energies:

- C multifoil polarimeter based on Si-detectors with pellet extraction (Univ. of Liverpool).
- Ballistic Si pellet target for homogeneous beam sampling.
- E_{loss} of 100 keV in 50 μ m pellet \rightarrow track displaced by 2.5 cm behind 45^o bend.

WP5 - Polarimetry and spin manipulation tools

Spin-manipulation: longitudinal RF-solenoid

- Vertical polarisation of stored beam rotated into horizontal plane.
 - Typical ramp-up times from vertical to horizontal polarisation: 200 ms.
 - Optimize design for PTR.

Spin-manipulation: RF-Wien filter

• Applies transv. magnetic fields to spin, exerting minimal Lorentz force on beam:

- optimize design for PTR
- two of them needed for CW-CCW operations

WP6 - Parameter control and expected performance

Simulations

- Beam and spin-tracking simulations to scrutinise and validate concepts and ideas
- Code bench-marking on existing COSY data
- Working group established

WP7 - Cost estimate

PSR Site Options

Green Field Lab No buildings available to house the EDM facility: no accelerator expertise; no experience with polarization measurements		Pre-prepared Lab Buildings to house the EDM facility available; accelerator expertise available; no polarization experience yet		Fully-receptive Lab Buildings to house the EDM facility available; storage ring expertise and polarization experience available
Optimal facility planning from scratch		 Moderate additional investment cost 		 Minimal investment cost Shortest lead time Available expertise
 Infrastructure (building) & facility costs largest Longest lead time Missing experience to build/run facility 		 Some additional invest- ments (e.g., polarized source) required 		 Possible compromises due to existing boun- dary conditions
Since Europe is leading th	is effort	since many years (JEDI, CPEDI	M), it sh	ould be European host lab.

WP8 - Dissemination and outreach

Description of Work

- Tools for intraconsortium communication
- Communication with the scientific community and industrial partners
- Outreach towards broad public
- Educating the coming generation

Personnel request and distribution

WP Number	WP title	Lead Participant Number	Lead Participant Short name	Person Months	Start month	End month
1	Project coordination	1	INFN	15	1	48
2	Ring design	3	CERN	48	1	48
3	Ring elements	1	INFN	84	1	48
4	Beam diagnostics and instrumentation	2	GSI	36	1	48
5	Polarimetry and spin manipulation tools	6	LIV	78	1	48
6	Parameter control and expected performance	5	RWTH	78	1	48
7	Cost estimate	1	INFN	12	1	48
8	Dissemination and outreach	7	JAG	36	1	48
				387		

Participant number & short name	WP1	WP2	WP3	WP4	WP5	WP6	WP7	WP8	Total PM participant
1 INFN	15		6			12	12	12	57
2 GSI				24	6				30
3 CERN		24	18	12		6			60
4 MPG		24	24						48
5 RWTH			36			12			48
6 LIV					48				48
7 JAG						24		24	48
8 TSU					24	24			48
	15	48	84	36	78	78	12	36	387

Timeline

Budget

	MM/cost	WP1		WP2		WP3		WP4	WP5			WP6		WP7 WP		WP8		SUMMARY MANPOWER				
	PostDocs	PostD		PostD		PostD		PostD		PostD		PostD		PostD		PostD		PostD		overhead	TOTAL	
		MM	¢	MM	¢	MM	¢	MM	¢	MM	€	MM	¢	MM	¢	MM	¢	MM	¢			
1 INFN	4150	15	62250		0	6	24900	0	0		0	12	49800	12	49800	12	49800	57	236550	59138	295688	INFN
2 651	6872		0		0		0	24	164928	6	41232		0		0		0	30	206160	51540	257700	IKP/GSI
3 CERN	9000		0	24	216000	18	162000	12	108000		0	6	54000		0		0	60	540000	135000	675000	CERN
4 RWTH/IAEW	6079		0		0	36	218844		0		0		0		0		0	36	218844	54711	273555	RWTH/IAEW
RWTH/PHIB	6079		0		0		0		0		0	12	72948		0		0	12	72948	18237	91185	RWTH/PHIB
RWTH/total	6079		0	0	0	36	218844	0	0	0	0	12	72948	0	0	0	0	48	291792	72948	364740	RWTH/total
5 MPI/HD	7160		0	24	171840	24	171840		0		0		0		0		0	48	343680	85920	429600	MPI/HD
6 Liverpool	5306		0		0		0		0	48	254688		0		0		0	48	254688	63672	318360	Liverpool
7 Cracow	3350		0		0		0		0		0	24	80400		0	24	80400	48	160800	40200	201000	Cracow
8 Tbilisi	1500		0		0		0		0	24	36000	24	36000		0		0	48	72000	18000	90000	Tbilisi
TOTAL		15	62250	48	387840	84	577584	36	272928	78	331920	78	293148	12	49800	36	130200	387	2105670	526418	2632088	
SUM	MARY MANPC	WER				TRAVEL			WO	KSHOPS/	UDIT		TOTALOTHER		ALOTHER		GRAND TOT	AL .				
	cost	over	total			cost	over	total		cost	over	total		cost	over	total		cost	total			
1 INFN	236550	59138	295688			20000	5000	25000		45000	11250	56250]	65000	16250	81250		301550	376938			
2 G5I	206160	51540	257700			20000	5000	25000		5000	1250	6250		25000	6250	31250		231160	288950			
3 CERN	540000	135000	675000			20000	5000	25000		25000	6250	31250		45000	11250	56250		585000	731250			
4 RWTH/IAEW	218844	54711	273555																			
RWTH/PHIB	72948	18237	91185																			
RWTH/total	291792	72948	364740			20000	5000	25000		5000	1250	6250		25000	6250	31250		316792	395990			
5 MPI/HD	343680	85920	429600			20000	5000	25000		5000	1250	6250		25000	6250	31250		368680	460850			
6 Liverpool	254688	63672	318360			20000	5000	25000	1	5000	1250	6250]	25000	6250	31250		279688	349610			
7 Cracow	160800	40200	201000			20000	5000	25000		25000	6250	31250		45000	11250	56250		205800	257250			
8 Tbilisi	72000	18000	90000			20000	5000	25000	1	15000	3750	18750]	35000	8750	43750		107000	133750			
]]									
TOTAL	2105670	526418	2632088			160000	40000	275000		130000	32500	162500		290000	72500	362500		2395670	2994588			