Search for Electric Dipole Moments and Axions/ALPs of charged particles using storage rings

Paolo Lenisa
University of Ferrara and INFN, Italy

HADRON 2023
$20^{\text {th }}$ International Conference on Hadron Spectroscopy and Structure

June 6 ${ }^{\text {th }}, 2023$

Motivation and Methodology

Physics case

Addressed issues

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Experimental approach

- Measurements of static Electric Dipole Moments (EDM) of fundamental particles.
- Searches for axion-like particles as DM candidates through oscillating EDM

Electric Dipole Moments

- Permanent separation of + and - charge
- EDM meas. test violation of P and T symmetries (${ }^{\text {CPP }} \mathrm{CP}$)
- CP - violation \Rightarrow one Sacharov's condition to explain Matter dominance

Static EDM upper limits

Direct EDM measurements missing

- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from ${ }_{80}^{199} \mathrm{Hg}$.
- No measurement yet of deuteron EDM.

Theory:

- EDM of single particle not suffcient to identify CP violating source

Axion Dark Matter search with Storage Ring EDM method

- Experimental limits for axion-gluon coupled oscillating EDM measurements

Spin-precession of particles with MDM and EDM

Equation of motion for spin vector \vec{S}

- In the rest frame of the particle

$$
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{s}=\vec{\mu} \times \vec{B}+\vec{d} \times \vec{E}
$$

- Spin-precession relative to the direction of flight

$$
\left[\left(\vec{\Omega}_{\text {MDM }}+\vec{\Omega}_{\text {EDM }}\right)-\vec{\Omega}_{\text {CyOC }}\right]=\frac{-q}{m}[\underbrace{G \vec{B}+\left(G-\frac{1}{\gamma^{2}-1}\right) \vec{v} \times \vec{E}}_{=\Omega_{\text {MOM }}-\Omega_{\text {CyO }}}+\underbrace{\frac{\eta}{2}(\vec{E}+\vec{v} \times \vec{B})}_{=\Omega_{E O M}}]
$$

Spin-precession of particles with MDM and EDM

Equation of motion for spin vector \vec{S}

- In the rest frame of the particle

$$
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{s}=\vec{\mu} \times \vec{B}+\vec{d} \times \vec{E}
$$

- Spin-precession relative to the direction of flight

$$
\left[\left(\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right)-\vec{\Omega}_{\text {cycl }}\right]=\frac{-q}{m}[\underbrace{G \vec{B}+\left(G-\frac{1}{\gamma^{2}-1}\right) \vec{v} \times \vec{E}}_{=\Omega_{M O M}-\Omega_{\text {cycl }}}+\underbrace{\frac{\eta}{2}(\vec{E}+\vec{v} \times \vec{B})}_{=\Omega_{E D M}}]
$$

Frozen spin

- $\vec{\Omega}_{\text {MDM }}-\vec{\Omega}_{\text {cycl }}=0 \Rightarrow$ frozen spin (momentum and spin stay aligned) Achievable with pure electric field for proton ($G>0$): $G=\frac{1}{\gamma^{2}-1}$ Requires special combination of E, B fields and γ for $\mathrm{d},{ }^{3} \mathrm{He}(\mathrm{G}<0)$

Search for static EDM in storage rings

Measurement concept

(1) Inject beam of polarized particles in storage ring
(2) Align spin along momentum (\rightarrow freeze horiz. spin-precession)
(3) Search for time development of vertical polarization

Search for static EDM in storage rings

Measurement concept

(1) Inject beam of polarized particles in storage ring
(2) Align spin along momentum (\rightarrow freeze horiz. spin-precession)
(3) Search for time development of vertical polarization

Storage ring method to measure EDM of charged particle

- Magic rings with spin frozen along momentum of particle.
- Polarization buildup $p_{y}(t) \propto \mathrm{d}$.

Developments at COSY

Technological achievements and new methodologies

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta $\mathrm{p}=0.3-3.7 \mathrm{GeV} / \mathrm{c}$
- Phase-space cooled internal and extracted beams

Previously used as spin-physics machine for hadron physics:

- Ideal starting point for srEDM related R\&D
- Dedicated and unique experimental effort worldwide

Experiment preparation

(1) Inject and accelerate vertically pol. deut. to $p \approx 1 \mathrm{GeV} / \mathrm{c}$

Experiment preparation

(1) Inject and accelerate vertically pol. deut. to $p \approx 1 \mathrm{GeV} / \mathrm{c}$
(2) Flip spin with solenoid into horizontal plane

Experiment preparation

(1) Inject and accelerate vertically pol. deut. to $p \approx 1 \mathrm{GeV} / \mathrm{c}$
(2) Flip spin with solenoid into horizontal plane
(3) Extract beam slowly (100 s) on Carbon target
(4) Measure asymmetry and determine spin precession

Optimization of spin-coherence time

- Invariant spin axis and spin-coherence time

Optimization of spin-coherence time

- Invariant spin axis and spin-coherence time

I major achievement

 [Phys. Rev. Lett. 117 (2016) 054801]- $\tau_{S C T}=(782 \pm 117) \mathrm{s}$
- Previously: $\tau_{S C T}(\mathrm{VEPP}) \approx 0.5 \mathrm{~s}$ ($\approx 10^{7}$ spin revolutions)
- SCT of crucial importance, since $\sigma_{S T A T} \propto \frac{1}{\tau_{S C T}}$

Precise determination of the spin-tune

Spin-tune ν_{s}

$$
\nu_{s}=\gamma G=\frac{\text { nb.spin-rotations }}{\text { nb.particle-revolutions }}
$$

Precise determination of the spin-tune

Spin-tune ν_{s}

$$
\nu_{s}=\gamma G=\frac{n b . s p i n-\text { rotations }}{\text { nb.particle-revolutions }}
$$

Il major achievement [Phys. Rev. Lett. 115 (2015) 094801]

- Interpolated spin tune in 100 s :
- $\left|\nu_{s}\right|=(16097540628.3 \pm 9.7) \times 10^{-11}\left(\Delta \nu_{s} / \nu_{s} \approx 10^{-10}\right)$
- Angle precision: $2 \pi \times 10^{-10}=0.6 \mathrm{nrad}$
- Previous best: 3×10^{-8} per year (g -2 experiment)
- \rightarrow new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:
Error of phase-lock $\sigma_{\phi}=0.21 \mathrm{rad}$

Phase locking spin precession in machine to device RF

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:
Error of phase-lock $\sigma_{\phi}=0.21 \mathrm{rad}$
At COSY freezing of spin precession not possible
\rightarrow phase-locking required to achieve precision for EDM

Developments at COSY

Research achievements

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields $=0$ spin motion is driven by radial field $\vec{E}=c \vec{\beta} \times \vec{B}$ induced by relativistic motion in the vertical \vec{B} field, so that $\frac{d \vec{S}}{d t} \propto \vec{d} \times \vec{E}$
- But this yields only small oscillation of vertical component p_{y} due to EDM.

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields $=0$ spin motion is driven by radial field $\vec{E}=c \vec{\beta} \times \vec{B}$ induced by relativistic motion in the vertical \vec{B} field, so that $\frac{d \vec{S}}{d t} \propto \vec{d} \times \vec{E}$
- But this yields only small oscillation of vertical component p_{y} due to EDM.

Problem

- Momentum $\uparrow \uparrow$ spin spin \Rightarrow spin kicked up
- Momentum $\uparrow \downarrow$ spin
\Rightarrow spin kicked down
- \Rightarrow no accumulation of vert. asymmetry

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields $=0$ spin motion is driven by radial field $\vec{E}=c \vec{\beta} \times \vec{B}$ induced by relativistic motion in the vertical \vec{B} field, so that $\frac{d \vec{S}}{d t} \propto \vec{d} \times \vec{E}$
- But this yields only small oscillation of vertical component p_{y} due to EDM.

Problem

- Momentum $\uparrow \uparrow$ spin spin \Rightarrow spin kicked up
- Momentum $\uparrow \downarrow$ spin
\Rightarrow spin kicked down
- \Rightarrow no accumulation of vert. asymmetry

Solution: RF-Wien filter

- Lorentz force: $\vec{F}_{L}=q(\vec{E}+\vec{v} \times \vec{B})=0$
- $\vec{B}=\left(0, B_{y}, 0\right)$ and $\vec{E}=\left(E_{x}, 0,0\right)$

Strength of EDM resonance

EDM induced polarization oscillation

- Described by: $p_{y}(t)=\mathrm{a} \sin \left(\Omega^{p_{y}} t+\phi_{R F}\right)$
- EDM resonance strength: ratio of $\Omega^{p_{y}}$ to orbital ang. frequency $\Omega^{r e v}: \epsilon^{E D M}=\frac{\Omega^{P_{y}}}{\Omega^{r e v}}$

Strength of EDM resonance

EDM induced polarization oscillation

- Described by: $p_{y}(t)=\mathrm{a} \sin \left(\Omega^{p_{y}} t+\phi_{R F}\right)$
- EDM resonance strength: ratio of $\Omega^{\rho_{y}}$ to orbital ang. frequency $\Omega^{\text {rev }}: \epsilon^{E D M}=\frac{\Omega^{P /}}{\Omega^{\text {rev }}}$

Methodology of EDM measurement

Two features simultaneously applied in the ring:
(1) RF Wien-filter rotated by a small angle \rightarrow generates small radial magnetic RF-field \rightarrow affects the spin evolution.
(2) In addition: longitudinal magnetic field in ring opposite to Wien-flter, about which spins rotate as well

Concept of EDM measurement

- Determination of the invariant spin axis
- Deduce upper limit for deuteron EDM

Effect of EDM and misalignments on invariant spin axis

EDM absence

EDM effect

Magnetic misalignm.

EDM tilts the invariant spin axis

- Presence of EDM $\rightarrow \xi_{E D M}>0$
\rightarrow spin precess around the \vec{c} axis
\rightarrow oscill. vert. polarization $p_{y}(t)$

Measurement of EDM resonance strength using pilot bunch

RF Wien filter mapping

IV major achievement

- Observation of $p_{y}(\mathrm{t})$ with two stored bunches: Signal and pilot bunch (PB)

Pilot bunch shielded from Wien-fillter RF by fast RF switches
\rightarrow unperturbed spin precession \rightarrow RF Wien-filter on resonance
Signal bunch contains EDM signal

- Pilot bunch

- Signal bunch

- No oscillations in pilot bunch.
- Decoherence visible in signal bunch.
- Determine oscillation frequencies $\Omega^{p y} \rightarrow$ Wien filter map $\epsilon^{E D M}=\frac{\Omega^{p y}}{\Omega^{\rho V}}$

Results from dEDM precursor experiment

EDM resonance strength map for $\epsilon^{E D M}$

- Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections.

Preliminary result on static EDM

- Determination of minimum via fit with theoretical surface function yields:

$$
\begin{aligned}
\phi_{0}^{\text {WF }}(\mathrm{mrad}) & =-2.05 \pm 0.02 \\
\psi_{0}^{\text {sol }}(\mathrm{mrad}) & =+4.32 \pm 0.06
\end{aligned}
$$

Results from dEDM precursor experiment

EDM resonance strength map for $\epsilon^{E D M}$

- Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections.

Preliminary result on static EDM

- Determination of minimum via fit with theoretical surface function yields:

$$
\begin{aligned}
& \phi_{0}^{\text {WF }}(\mathrm{mrad})=-2.05 \pm 0.02 \\
& \psi_{0}^{\text {sol }}(\mathrm{mrad})=+4.32 \pm 0.06
\end{aligned}
$$

Extraction of EDM

(1) Minimum determines spin rotation axis (3-vector) at RF WF, including EDM
(2) Spin tracking in COSY lattice \rightarrow orientation of stable spin axis w/o EDM
(3) EDM is obtained from the difference of 1 . and 2 .

EDM analysis presently focused on systematics

- Data analysis close to final \& EDM results in preparation.
- Goal: Describe observed tilts of stable spin axis by spin tracking

Measurement of axion-like particle in storage ring

First-ever search for axion-like particles using this method

Axions and oscillating EDM

- Axion: candidates for light dark matter ($m_{a}<10^{-6} \mathrm{eV}$)
- Axion interaction with ordinary matter: $\frac{a}{t_{0}} F_{\mu \nu} \tilde{F}_{\mu \nu}, \frac{a}{t_{0}} G_{\mu \nu} \tilde{G}_{\mu \nu}, \frac{\partial_{\mu} a}{t_{a}} \bar{\Psi} \gamma^{\mu} \gamma_{5} \psi$
- $\frac{a}{\Gamma_{0}} G_{\mu \nu} \tilde{G}_{\mu \nu} \rightarrow$ coupling to gluons with same structure as QCD- θ term
- Generation of an oscillating EDM with freq. related to mass: $\hbar \omega_{a}=m_{a} c^{2}$

Measurement of axion-like particle in storage ring

First-ever search for axion-like particles using this method

Axions and oscillating EDM

- Axion: candidates for light dark matter ($m_{a}<10^{-6} \mathrm{eV}$)
- Axion interaction with ordinary matter: $\frac{a}{\hbar_{0}} F_{\mu \nu} \tilde{F}_{\mu \nu}, \frac{a}{f_{0}} G_{\mu \nu} \tilde{G}_{\mu \nu}, \frac{\partial_{\mu} a}{f_{a}} \bar{\Psi} \gamma^{\mu} \gamma_{5} \psi$
- ${ }_{\tau_{0}}^{\frac{a}{t_{0}}} G_{\mu \nu} \tilde{G}_{\mu \nu} \rightarrow$ coupling to gluons with same structure as QCD- θ term
- Generation of an oscillating EDM with freq. related to mass: $\hbar \omega_{a}=m_{a} c^{2}$

Experimental approach

- Mag. dipole moment (MDM) \rightarrow spin prec. in B field \rightarrow nullifies static EDM effect
- Osc. EDM resonant condition $\left(\omega_{a}=\omega_{s}\right) \rightarrow$ buildup of out-of-plane spin rotation

Experiment at COSY

Momentum ramps ($f_{\text {rev }}$) searching for polarization changes

- Organization of frequency ramps.

Expectation:

- Jump of vertical polarization when resonance is crossed, for $\omega_{a}=\omega_{s}$

Cover different oscillating EDM phases using multiple bunches

- ϕ_{a} not known \rightarrow use perpendicular beam polarization with 4 bunches.

- LR asymmetry for one cycle and four bunches simultaneously orbiting.

Bound on oscillating EDM of deuteron

Observed oscillation amplitudes from 4 bunches

- 90 \% CL upper limit on the ALPs induced oscillating EDM
- Average of individual measured points $d_{A C}<6.4 \times 10^{-23} \mathrm{e} \mathrm{cm}$

Bound on ALP-EDM coupling

Coupling of ALP to deuteron EDM

- Obtained limit of $g_{a d}<1.7 \times 10^{-7} \mathrm{GeV}^{2}$ during few days of data taking
- Accepted for publication on Phys. Rev. X

Next steps

Strategy: staged approach to a storage ring for precision physics

On the basis of the preparedness of the required technological developments

Stage 1
precursor experiment at COSY (FZ Jülich)

- magnetic storage ring

Stage 2

prototype ring

- electrostatic storage ring
- simultaneous \circlearrowright and \circlearrowleft beams

5 years

Stage 3
dedicated storage ring

- magic momentum ($701 \mathrm{MeV} / \mathrm{c}$)
10 years

$$
\sigma_{E D M} /(e \cdot \mathrm{~cm})
$$

Project stages and time frame

Next step: Stage 2: Prototype EDM storage ring (PSR)

Build demonstrator for charged particle EDM

- Project prepared by CPEDM working group (CERN+JEDI)
- P.B.C. process (CERN) \& European Strategy for Particle Physics Update

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Next step: Stage 2: Prototype EDM storage ring (PSR)

Build demonstrator for charged particle EDM

- Project prepared by CPEDM working group (CERN+JEDI)
- P.B.C. process (CERN) \& European Strategy for Particle Physics Update

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges - open issues

- All electric \& E-B combined deflection
- Storage and spin-coher. time in elec. machine
- CW-CCW operation
- Orbit control
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Primary purpose of PSR

- Study open issues and perform first direct proton EDM measurement.

Summary

EDM searches in Storage Rings

- Outstaning science: high discovery potential in fundam. phys. and cosmology
- Important developments in accelerator technology

Summary

EDM searches in Storage Rings

- Outstaning science: high discovery potential in fundam. phys. and cosmology
- Important developments in accelerator technology

Technological achievements and new methodologies

- > 1000 s spin-coherence time
- Precise determination of spin-tune
- Phase locking of spin-precession
- Pilot bunch method

Research achievements

- First ever measurement of deuteron EDM using a storage ring
- First-ever search for axion-like particles using a storage ring

Summary

EDM searches in Storage Rings

- Outstaning science: high discovery potential in fundam. phys. and cosmology
- Important developments in accelerator technology

Technological achievements and new methodologies

- > 1000 s spin-coherence time
- Precise determination of spin-tune
- Phase locking of spin-precession
- Pilot bunch method

Research achievements

- First ever measurement of deuteron EDM using a storage ring
- First-ever search for axion-like particles using a storage ring

Staged approach to face challenges in accelerator technology

- Design of a small-scale prototype ring
- ERC-AdG submitted on 23.05.23

Selected publications

- D. Eversmann et al (JEDI Collaboration): New method for a continuous determination of the spin tune in storage rings and implications for precision experiments - Phys. Rev. Lett. 115, 094801 (2015) https://link.aps.org/doi/10.1103/PhysRevLett.115.094801
- J. Slim, et al.:Electromagnetic simulation and design of a novel waveguide rf-Wien filter for electric dipole moment measurements of protons and deuterons - Nucl. Instr. and Meth. A: 828, 116 (2016), ISSN 0168-9002-http: / /www. sciencedirect.com/science/article/pii/S0168900216303710
- G. Guidoboni et al. (JEDI Collaboration): How to reach a thousand-second in-plane polarization lifetime with 0:97 Gev/c deuterons in a storage ring - Phys. Rev. Lett. 117, 054801 (2016) http://link.aps.org/doi/10.1103/PhysRevLett.117.054801
- N. Hempelmann et al. (JEDI Collaboration): Phase locking the spin precession in a storage ring - Phys. Rev. Lett. 119, 014801 (2017) https://link.aps.org/doi/10.1103/PhysRevLett.119.014801
- F. Abusaif (CPEDM Collaboration): Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study - (CERN, Geneva, 2021), 1912.07881
- S. Karanth et al. (JEDI Collaboration): First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam (2022) - 2208.07293.

