Storage Rings for the Search of Charged Particle Electric Dipole Moments

Paolo Lenisa

University of Ferrara and INFN (Italy)

ECFA Meeting, November 20th, 2020

Motivation

Addressing the most intriguing puzzles of contemporary physics

Problems

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Addressing the most intriguing puzzles of contemporary physics

Problems

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Approach

- Measurements of static Electric Dipole Moments (EDM) of fundamental particles.
- Searches for axion-like particles as DM candidates through oscillating EDM

Electric Dipole Moment (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible via violation of time-reversal (T) and parity (P)

Electric Dipole Moment (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible via violation of time-reversal (T) and parity (P)

EDM meas. test violation of P and T and $(\stackrel{CPT}{=} CP)$

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

• Excess of Matter in the Universe:

$$\eta = rac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 observed SM prediction 10^{-18}

• Sacharov (1967): CP-violation needed for baryogenesis

- $\bullet \Rightarrow \text{New CP-V sources beyond SM needed}$
- Could show up in EDMs of elementary particles

STATIC EDM: current upper limits

• Objective: EDMs of charged hadrons: p, d, ³He

Note: current limit on p-EDM: $2.0 \times 10^{-25} e \cdot cm$ (ind. from $d_p^{\downarrow 199Hg}$

• Final goal: to bring the limit on p to 10⁻²⁹ e · cm

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

OSCILLATING EDM: axion mass vs gluon coupling

Experimental limits for the axion-gluon coupled oscillating EDM measurement.

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

Why Charged Particle EDMs?

- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity (compared to neutrons):
 - no lifetime limitation;
 - more particles (\rightarrow better statistics), different systematics;
 - required to deduce EDM source(s);
- o complementary to neutron EDM:

Why Charged Particle EDMs?

- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity (compared to neutrons):
 - no lifetime limitation;
 - more particles (→ better statistics), different systematics;
 - required to deduce EDM source(s);
- o complementary to neutron EDM:

EDM of single particle not sufficient to identify CP-V source

Sources of CP Violation

Experimental method

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = [(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) - \vec{\Omega}_{cycl}] \times \vec{s} =$$

$$= \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{MDM} - \Omega_{cycl}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$

$$= \frac{1}{2} \cdot \frac{1}{2}$$

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = [(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) - \vec{\Omega}_{cycl}] \times \vec{s} =$$

$$= \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{MDM} - \Omega_{cycl}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$
- Mag. dip. mom. (MDM): $\vec{\mu} = 2(\vec{G} + 1)\frac{qh}{2m}\vec{s}$ (G=1.79 for proton)
- El. dip. mom. (EDM): $\vec{d} = \eta \frac{qh}{2mc}\vec{s}$ ($\eta = 2 \cdot 10^{-15}$ for $d = 10^{-29}e \cdot cm$)

Frozen spin

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{\Omega_{MDM} - \Omega_{cycl} = 0 \to \text{frozenspin}} + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right) \right] \times \vec{s}$$
- Achievable with pure electric field for proton (G > 0): $\vec{G} = \frac{1}{2^2 - 1}$

- Requires special combination of E, B fields and γ for d, ^{3}He (G < 0)

EDM IN STORAGE RINGS

Search for static EDM in storage rings

Measurement concept

- Inject particles in storage ring
- 2 Align spin along momentum (→ freeze horiz. spin-precession)
- Search for time development of vertical polarization

Search for static EDM in storage rings

Measurement concept

- Inject particles in storage ring
- ② Align spin along momentum (→ freeze horiz. spin-precession)
- Search for time development of vertical polarization

Frozen-spin condition:

- Pure E ring for p
- Combined E/B ring for *d* and ³He

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

Search for oscillating EDM in storage rings

Combined E/B ring

- Mag. dipole moment (MDM) \rightarrow spin prec. in B field \rightarrow nullifies static EDM effect
- Search of resonance (axion/ALP mass) via change of beam momentum

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: $E \sim 10 \text{ MV/m}$
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from *unwanted* magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: $E \sim 10 \text{ MV/m}$
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of data taking:

•
$$\sigma_{stat} = \frac{\hbar}{\sqrt{Mt_{\tau}PAF}} \Rightarrow \sigma_{stat} = 2.6 \times 10^{-29} e \cdot cm$$

• Experimentalist's goal: provide σ_{syst} to the same level.

Achievements at COSY

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Previously used as spin-physics machine for hadron physics:

- Ideal starting point for srEDM related R&D
- Dedicated and unique experimental effort worldwide

EDM IN STORAGE RINGS

Experiment preparation

1 Inject and accelerate vertically pol. deut. to $p \approx 1$ GeV/c

Experiment preparation

Inject and accelerate vertically pol. deut. to p ~ 1 GeV/c
Flip spin with solenoid into horizontal plane

Experiment preparation

- **①** Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on Carbon target
- Measure asymmetry and determine spin precession

Optimization of spin-coherence time

Optimization of spin-coherence time

I major achievement [Phys. Rev. Lett. 117 (2016) 054801]

- $\tau_{SCT} = (782 \pm 117)s$
- Previously: τ_{SCT} (VEPP) $\approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions}$)
- SCT of crucial importance, since $\sigma_{\textit{STAT}} \propto \frac{1}{\tau_{\textit{SCT}}}$

Precise determination of the spin-tune

Precise determination of the spin-tune

Il major achievement [Phys. Rev. Lett. 115 (2015) 094801]

- Interpolated spin tune in 100 s:
- $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3 × 10⁻⁸ per year (g-2 experiment)
- ullet \rightarrow new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

Phase locking spin precession in machine to device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

At COSY freezing of spin precession not possible \rightarrow phase-locking required to achieve precision for EDM

Strategy: staged approach

Staged approach

On the basis of the preparedness of the required technological developments

Stage 1 precursor experiment at COSY (FZ Jülich)

magnetic storage ring

Stage 2

5 years

prototype ring

 $r \rightarrow 8 \text{ m}$

Stage 3

dedicated storage ring

• magic momentum

(701 MeV/c)

10 years

simultaneous () and () beams

electrostatic storage ring

now

Staged approach

On the basis of the preparedness of the required technological developments

Stage 1 precursor experiment at COSY (FZ Jülich)

• magnetic storage ring

Stage 2

5 years

prototype ring

 $\frac{p}{p} \xrightarrow{p} \frac{p}{p} \xrightarrow{p} \frac{p}{p} \xrightarrow{p} \frac{p}{p} \xrightarrow{p} \frac{p}{p}$

electrostatic storage ring

Stage 3

dedicated storage ring

• magic momentum

(701 MeV/c)

10 years

 $\sigma_{EDM}/(\boldsymbol{e}\cdot\mathrm{cm})$

simultaneous
 ∆ and
 ∆ beams
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 ∆
 <

ERC-AdG application: Pathfinder for a Charged-Particle EDM Storage Ring (P-EDM)

P. Lenisa (Univ. Ferrara and INFN)

now

EDM IN STORAGE RINGS

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
 Key-performance enabler for the final ring
- Project prepared by CPEDM working group (CERN+JEDI)
 - P.B.C. process (CERN) & European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage and spin-coher. time in elec. machine
- CW-CCW operation
- Orbit control
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

ECFA 24 / 34

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Funding

- Ongoing: ERC-AdG: srEDM (2016-2021) (P.I. H. Ströher)
- Submitted: ERC-AdG: P-EDM (P.I. P. Lenisa)
- Planned: Design Study in Horizon Europe

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-control developments
- Technological systems and tools for future accelerators

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Funding

- Ongoing: ERC-AdG: srEDM (2016-2021) (P.I. H. Ströher)
- Submitted: ERC-AdG: P-EDM (P.I. P. Lenisa)
- Planned: Design Study in Horizon Europe

Unique chance that Europe should not miss!

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

Collaboration

JEDI = Jülich Electric Dipole moment Investigations

- Spokespersons: P. L. & J. Pretz (RWTH-Aachen and FZ-Jülich)
- 90 members (Aachen, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi

CPEDM Collaboration: JENAA - Eol

- St. Rings for the search of Charged-Particles EDMs
- Submitters: C. Carli (CERN) P. L. & J. Pretz
- 119 endorsers
- https://indico.ph.tum.de/event/4482/overview

Collaboration

JEDI = Jülich Electric Dipole moment Investigations

- Spokespersons: P. L. & J. Pretz (RWTH-Aachen and FZ-Jülich)
- 90 members (Aachen, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi

CPEDM Collaboration: JENAA - Eol

- St. Rings for the search of Charged-Particles EDMs
- Submitters: C. Carli (CERN) P. L. & J. Pretz
- 119 endorsers
- https://indico.ph.tum.de/event/4482/overview

744. WE-Heraeus-Seminar (Bad-Honnef, Germany)

- Towards Storage Ring Electric Dipole Moment Measurements
- Organizers: M. Lamont (CERN), J. Pretz, A. Wirzba (FZ-Jülich)
- https://www.we-heraeus-stiftung.de/index.php?id=1567

EDM IN STORAGE RINGS

Spares

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

ECFA 27 / 34

Status preparedness levels for the full-scale all-electric ring.

Operations	Rank	Comment	Reference
spin control feed-back	G	COSY R&D	App. A.1.3
spin coherence time	G(-)	COSY R&D	App. A.1.2
polarimetry	Y	polarimetry is destructive	Chap. 11
beam current limit	R	enough protons for EDM	Sect. 7.2
CW/CCW operation	R	systematic EDM error reduction	Ref. [1]
Theory			
GR gravity effect	G(+)	this paper, standard candle bonus	App. D
frozen spin fixed point stable?	G	stable, this paper	App. G.5.5
intrabeam scattering	Y	may limit run duration	Ref. [3]
geometric/Berry phase theory	Y	needs further study	Ref. [4]
Components			
quads	G	e.g. CSR design	Chap. 9
polarimeter	G	COSY R&D	Chap. 11
waveguide Wien filter	G	COSY R&D precursor	App. A.1.5
electric bends	R(+)	sparking/cost compromise	App. A.1.10
Physics & Engineering			
cryogenic vacuum	Y	required?-cost issue only	Ref. [5]
stochastic cooling	Y	ultraweak focusing issue	Ref. [6]
power supply stability	Y(-)	may prevent phase lock	Chap. 7
regenerative breakdown	R(+)	specific to mainly-electric,	
		not seen in E-separators	
EDM systematics			
polarimetry	G(-)	COSY R&D	Chap. 11
CW/CCW beam shape matching	Y		Chap. 10
beam sample extraction	Y	systematic error?	Chap. 11, App. K
control current resettability	Y		Ref. [7]
BPM precision	Y(-)	Rogowski? Squids?	Chap. 7, Chap. 10
element positioning & rigidity	Y(-)	must match light source stability	Ref. [8]
theoretical analysis			Chap. 10 and refs.
Radial B-field Br	R	assumed to be dominant	Ref. [1]

Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study (arXiv:1912.07881 [hep-ex])

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

Polarimeter

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$
- Left/Right asymmetry \propto vertical polarization \rightarrow d

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin (2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6$ turns/precession
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Solution: map many event to one cycle

- Counting turn number $n \rightarrow phase$ advance $\phi_s = 2\pi \nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \rightarrow \phi_s \mod 2\pi$

Beam position monitors for srEDM experiments

Development of compact BPM based on Rogowski coil

• Main adv.: short install. length (\approx 6 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length = 20 cm
- Resolution \approx 5 μ m

Rogowski BPM (warm)

- Excellent RF-signal response
- Length = 1 cm
- Resolution < 1µm</p>

High-precision beam polarimeter with internal C target

Based on LYSO scintillator readout by SiPM

- Compared to Nal:
 - high density (7.1 vs 3.67 g/ cm^3),
 - fast decay time (45 vs 250 ns).

Perspectives:

- Capable of operating with CW and CCW beams
- System installed in Spring 2020.
- Under study: Ballistic diamond pellet target for homogeneous beam sampling.
- Possibility of determining polarization profile of the beam

New tool for fast tune and chromaticity measurement

Fast tune measurement within a few milliseconds

 Fast tune meas. based on bunch-by-bunch beam position meas.: Betatron oscillations excited through stripline electrodes

 → resonant transverse oscillations observed through beam position pick-ups.

Determination of the chromaticity:

Particle momentum changed by small frequency change

 \rightarrow observed tune change provides a measure for the chromaticity.

P. Lenisa (Univ. Ferrara and INFN)

EDM IN STORAGE RINGS

E/B deflector development using real-scale setup

Equipment

- Dipole magnet B_{max} = 1.6 T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and detector

First results expected soon

Parameters

- Electr. length = 1020 mm
- Electr. height = 90 mm
- Electr. spacing = 20 to 80 mm
- Max potential = ± 200 kV
- Material: AI coated with TiN