

SEARCH FOR ELECTRIC DIPOLE MOMENTS AT COSY IN JÜLICH – **SPIN-TRACKING SIMULATIONS USING BMAD**

V. Poncza¹, A. Lehrach^{1,2}, Institut für Kernphysik 4, Forschungszentrum Jülich, 52425 Jülich, Germany, ¹also at III. Physikalisches Institut B, RWTH Aachen University ²and JARA-FAME, 52056 Aachen, Germany on behalf of the JEDI Collaboration

- > Vertical spin build-up as a measure of EDM
- > EDM-like signals due to systematic effects
- > **Spin-tracking** simulations needed to disentangle systematic effects from real EDM signal

Invariant Spin Axis

- > Track reference particle for several turns using the Bmad Software Library [1]
- \succ Calculate the normal vector \vec{n}_i for each possible combination of three spin vectors
- \succ The invariant spin axis $\langle \vec{n} \rangle$ is the mean of all normal vectors benchmarking:

Input: $\eta = 0.0002 \Rightarrow$ theory: $n_x = -0.32127 \cdot 10^{-3}$, $n_z = 0$

 $(-0.321269108 \cdot 10^{-3} \pm 7.636 \cdot 10^{-9})$ <u>Output</u>: $\langle \vec{n} \rangle =$ $0.999999948393 \pm 2.5 \cdot 10^{-12}$ $2.568 \cdot 10^{-9} + 1.6878 \cdot 10^{-8}$

Basic idea:

- > Fit point of minimal resonance strength (ϕ_0 , χ_0)
- $\geq \phi_0$ is a measure of the EDM + systematic effects

Simulation: $\eta = 0 + \text{magnet misalignments}$

<u>Simulation</u>: $\phi_0 = 0.15 \pm 0.02$ mrad, $\chi_0 = 0.01 \pm 0.01$ mrad <u>Measurement</u>: $\phi_0 = -3.7 \pm 0.04$ mrad, $\chi_0 = -6.96 \pm 0.04$ mrad

 \Rightarrow unknown longitudinal field components

Summary & Outlook

- > The COSY ring is modeled using Bmad
- > The implemented method to determine the invariant spin axis is in agreement with theoretical predictions
- > Simulating the experimental situation and comparing the results to the measurement show a lack of knowledge of the net longitudinal field in COSY
- > Possible sources of longitudinal fields are fringe fields and the narrow positioning of the COSY magnets which will be added to the model

References

- [1] D. Sagan, "Bmad: A relativistic charged particle simulation library", Nuclear Instruments and Methods in Physics Research A, vol. 558, pp. 356-359, 2006.
- [2] T. Fukuyama and A. J. Silenko, "Derivation of Generalized Thomas Bargmann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment", Int. J. Mod. Phys. A28, p.1350147, 2013.
- [3] A. Saleev, N.N. Nikolaev, and F. Rathmann, "JEDI and RF Wien Filter Driven Spin Dynamics", unpublished.

v.schmidt@fz-juelich.de