Spin Tune Analysis for Longer Cycles

Abhiroop Sen

Forschungszentrum Jülich

March 31, 2020

- 2 Features & Fourier Spectra
- Spin Tune Determination
- Uncertainty in the Spin Tune

- The electric dipole moment (EDM) is a fundamental property of a particle
- EDMs violate time and parity symmetry, therefore, under the CPT theorem, violate CP symmetry
- EDMs can be used investigate the matter-antimatter asymmetry in the universe, axions etc.

Figure: Behaviour of an EDM under P and T transformations

• The motion of the spin vector \vec{S} in an accelerator is given by the Thomas-BMT equation, which is written in a simplified form as

$$\frac{d\overrightarrow{S}}{dt} = (\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}) \times \overrightarrow{S}$$
(1)

- In COSY, vertically polarized particles are injected and the polarization is flipped onto the horizontal plane using an RF solenoid, causing the spin to precess
- The spin tune is defined as the number of times the spin precesses about its axis per particle turn in the ring, i.e

$$\nu_s = \frac{f_{spin}}{f_{beam}} \tag{2}$$

Detectors and Data Acquisition

- If a beam is polarized in the horizontal plane, the count rates in the up and down detectors, due to spin precession, is $N_{up/dn} \propto \sigma_0 (1 \pm PA \sin(\omega t + \phi))$
- σ_0 is the unpolarized cross section, P is the polarization, Ais the analyzing power, $\omega = 2\pi f_{spin} = 2\pi \nu_s f_{beam}$
- In order to get the three parameters P, ω and ϕ , an asymmetry is formed

$$\epsilon(t) = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}} = PA\sin(\omega t + \phi)$$
(3)

Figure: EDDA detector showing the separate detector quadrants

Fourier Transform Review

• A simple parameterization of the recorded data, as a function of turn number *n*, is given by

$$p_s(n) = 1 \pm \epsilon \sin\left(2\pi\nu_s n + \phi_s\right) \tag{4}$$

where ν_s is the spin tune and ϕ_s is the phase

- Performing a Fourier transformation on this data allows us to decompose it into a frequency spectrum and easily locate the spin tune frequency
- Since the data is recorded in discrete points in time, a discrete Fourier transform is performed, given by

$$\hat{f}_{\nu_s} = \sum_{n_{ev}=1}^{N} f(n_{ev}) \left(\cos(2\pi\nu_s n_{ev}(n)) - \imath \sin(2\pi\nu_s n_{ev}(n)) \right)$$
(5)

Phase & Amplitude

 The Fourier coefficients are then given by
 a_{νs} = ²/_N Σ^N_{n_{ev}=1} cos(2πν_sn_{ev}(n)), b_{νs} = ²/_N Σ^N_{n_{ev}=1} - sin(2πν_sn_{ev}(n))

 Therefore, the phase φ_{νs} and amplitude A_{νs} are given by φ_{νs} =
 atan2(b_{νs}, a_{νs}) and A_{νs} = √a²_{νs} + b²_{νs}

Features of the Run

- Analyzing Run 51180 May 2019
- Polarized deuterons at 970 MeV/c
- $\bullet~2$ polarized cycles of 900 s $\sim 675 \times 10^6$ turns, 4 bunches
- Extraction occurs at 10 intervals during the cycle

A clear peak at the spin tune frequency $\nu_{\rm s}\approx 0.161$ is observed in the Fourier spectrum

Amplitude of the Fourier Spectrum

Analysing a much smaller frequency range, the Fourier spectrum shows clear peaks around the spin tune $\nu_s = 0.16100045$

Relation between Phase and Spin Tune

- The phase of the spin tune is given by $\phi_{
 u_s}(n) = ext{atan2}(b_{
 u_s}, a_{
 u_s})$
- The turn dependent spin tune $\nu_s(n)$ is derived using the angular frequency

$$\delta\nu_{s}(n) = \frac{1}{2\pi}\delta\omega_{\nu_{s}}(n) = \frac{1}{2\pi}\frac{d\delta\phi_{\nu_{s}}(n)}{dn}$$
(6)

• The spin tune is defined as $\nu_s = \frac{f_{spin}}{f_{beam}}$, therefore

$$\frac{\Delta\nu_{s}}{\nu_{s}} = \frac{\Delta f_{spin}}{f_{spin}} - \frac{\Delta f_{beam}}{f_{beam}}$$
$$= \frac{1}{2\pi\nu_{s}} \frac{\partial\phi_{\nu_{s}}(n)}{\partial n}$$

(7)

• The turn dependent spin tune is therefore given by

$$\nu_{s}(n) = \nu_{s}^{0} + \delta\nu_{s} = \nu_{s}^{0} + \frac{1}{2\pi} \frac{\partial\phi_{\nu_{s}}(n)}{\partial n}$$
(8)

where ν_s^0 is the initial spin tune

- Therefore, the phase $\phi_{\nu_s}(n)$, which is calculated using the Fourier spectrum, is plotted against the turn number and fitted with a polynomial (order 2)
- From this fit, we get the slope of the phase with respect to turn number, i.e $\frac{\partial \phi_{\nu_s}(n)}{\partial n}$
- Using this, we calculate the spin tune $\nu_s(n)$

- The turn dependent phase is calculated by varying the frequency, hence Fourier coefficients, and plotting them at different turn numbers $\phi(n) = \operatorname{atan2}(b_{\nu_s}, a_{\nu_s})$
- The peak frequency from the Fourier spectrum is taken as the centre and a frequency range is created for frequencies lesser than and greater than the peak
- Varying the frequency changes the overall slope of the phase evolution
- If the frequency at which the phase is calculated and the spin tune frequency match then the phase remains constant

Phase of the Fourier Spectrum

• The figure shows the phase distribution for a frequency of $\nu = 0.161000509$ for one bunch in one cycle, which is then fitted with a second order polynomial

Phase in Different Bunches

Figure: Phase plots and fits in 4 bunches

Spin Tune

Figure: Spin tune drift during the cycle in one bunch

Spin Tune Evolution in Bunches

Figure: Spin tune evolution in different bunches in one polarized cycle

- Fitting a polynomial of order 2 to the phase $\phi(n) = c_0 + c_1 n + c_2 n^2$ $\Rightarrow \frac{\partial \phi(n)}{\partial n} = c_1 + 2c_2 n$
- Therefore, the spin tune is given by $u_s(n) =
 u_s^0 + rac{1}{2\pi} \left(c_1 + 2c_2 n
 ight)$
- The error on the spin tune is given by

$$\sigma_{\nu_s}^2 = \frac{1}{4\pi^2} \left(\sigma_{c_1}^2 + 4\sigma_{c_2}^2 n^2 + 4n \text{cov}(c_1, c_2) \right)$$
(9)

- \bullet Earlier spin tune measurements with cycles \sim 100 s had achieved an uncertainty in spin tune of the order of 10^{-10}
- $\bullet\,$ The minimum uncertainty observed for this cycle is in the order of $\sim 10^{-11}$

Uncertainty in Spin Tune Measurement

Figure: Uncertainty in the spin tune during the cycle in one bunch

Uncertainty in Spin Tune in Bunches

Figure: Uncertainty in spin tune in different bunches

Comparing to Expected Uncertainty

- JEDI
- The uncertainty in the phase is given by $\sigma_{\phi}^2 = \frac{2}{NP^2}$ where N is the number of events and P is the polarization
- If the variance in the time values when the phase measurements took place is V(t), the uncertainty in the spin tune is given by

$$\sigma_{\nu_s}^2 = \frac{\sigma_{\phi}^2}{N_{bin}V(t)} = \frac{\frac{2}{NP^2}}{N_{bin}V(t)}$$
(10)

• $V(t) \propto T_{cycle}^2$, $N_{bin} \cdot N = N_{tot}$, implies

$$\sigma_{\nu_s}^2 \propto \frac{2}{P^2 T_{cycle}^2 N_{tot}} \implies \sigma_{\nu_s} \propto \frac{1}{T_{cycle}}$$
 (11)

• Therefore, if T_{cycle} is ten times greater (1000 s vs. 100 s), σ_{ν_s} is expected to drop by an order of 10, which is what is observed

- The spin tune is an important quantity in the study of EDMs
- Longer cycles are expected to help make more precise calculations of the spin tune
- 1000 s cycles were analyzed using the Fourier method
- The uncertainty in the spin tune was observed to have gone down to 10^{-11} , compared to 10^{-10} for 100 s cycles