

FPGA-Based Upgrade of the Read-Out Electronics for the Low Energy Polarimeter at the Cooler Synchrotron

March 19, 2015 | Nils Hempelmann for JEDI collaboration |

Motivation

Low Energy Polarimeter

GANDALF

Test Measurements

Summary & Outlook

March 19, 2015

EDM and Fundamental Symmetries

- Nonzero electric dipole moment (EDM) in elementary particle violates CP-Symmetry
- Standard-Model prediction: 10^{-32} to $10^{-31} \, \mathrm{e\, cm}$
- New Physics?

Measurement of Charged Hadron EDM at Storage Rings

Low Energy Polarimeter

- 8 Flanges to attach detectors
- 75 MeV kinetic energy for deuterons, 45 MeV for protons

Detectors

- Three detectors each for particles scattered left, right, up and down
- Plastic scintillators + PMTs spaced 10° apart
- Changeable collimators

Event Selection

- Pulse height spectrum
 - proton peak on the left hand side
 - carbon peaks on the right hand side

- Time spectrum
 - Background at frequency of cyclotron output (38.5 ns)
 - Time resolution $\sim 2.5\,\mathrm{ns}$

GANDALF

- 8 analog input channels for ADC in interleaved mode (1 GSample/s), need two modules
- FPGA for readout
- time resolution $\mathcal{O}(50\,\mathrm{ps})$
- USB connection: ~20 MB/s

Constant Fraction Discriminator

- Invert and delay signal
- Find zero-crossing of sum by linear interpolation
- Return pulse height and time

Firmware

- Original firmware for COMPASS experiment, has to be adapted
- Implement self-triggered operation
- Implement direct output to USB: Done
- Implement amplitude discrimination and counter: more testing needed
- Implement time discrimination: simulated

Amplitude Measurement

- Rise time 3.7 $\rm ns,$ total duration $12\,\rm ns$
- Amplitude varied between 0.13 and 2 V

Amplitude Measurement

- Example at amplitude 1.8 V
- Amplitude RMS $\sim 5\%$

Timing & Pile-Up Separation Measurement

- 500 mV double pulse, same shape as before
- Vary time difference

Timing Measurement

- Example at $\Delta t = 20 \, \mathrm{ns}$
- Timing RMS $\sim 150\,\mathrm{ps},$ possibly instability of pulser

fember of the Helmholtz-Associat

Summary & Outlook

- Modification of firmware in progress
 - Self triggered measurement implemented
 - Counting on FPGA implemented
 - Still need time discrimination
 - Better user interface
- Integrate polarization state of particle source into measurement
- Final aim: tensor analyzing power measurement for deuteron scattering at 75 MeV, remeasure vector analyzing power

Current Read-Out

- Measure event rate, pulse height spectrum, coincidence
- Used to determine vector and tensor polarizations of beam

March 19, 2015

Energy Spectrum

holtz-Association

March 19, 2015

Nils Hempelmann for JEDI collaboration

Slide 16

Time Spectrum

Assoc

toltz-

Member of the Helm