766. WE-Heraeus-Seminar

High-Precision Measurements and Searches for New Physics 09–13 May 2022 Physikzentrum Bad Honnef

Thursday, May 12, 2022

Cooler Synchrotron (**COSY**) at IKP of Forschungszentrum Jülich (Germany)

1

Storage Rings: From Hadron Physics to Precision Measurements

Hans Ströher

for the JEDIand the CPEDM collaboration

PRELUDE – COSY HISTORY

- > 1993 (April 1): Inauguration
- > 1993: First experiment
- > 1996: Polarized beams (p), 1998 (full energy), 2003 (d)
- > Hadron physics (internal, external target stations)
 - Elastic pp- and pn-scattering
 - Threshold meson production (N*, Δ*)
 - Dibaryonic state d*(2380) in pn $\rightarrow \Delta \Delta \rightarrow d\pi^0 \pi^0$
- > 2005: WASA detector (from TSL/Uppsala \rightarrow COSY)
 - Rare η-decays
 - Search for Dark Photons
- 2016: Termination of Hadron Physics program
- > 2010: JEDI (Jülich Electric Dipole moment Investigations)
 - 485. WE-Heraeus Seminar 2011 (and # 744. in 2021)

PRELUDE – COSY POLARIZATION HISTORY (I)

> Polarization hardware: sources, targets, polarimeter; manipulation tools

COSY polarized H⁻,D⁻ source

target (ABS)

EDDA, WASA, JEDI polarimeter

RF dipole **RF** solenoid

Siberian snake **RF Wien filter**

PRELUDE – COSY POLARIZATION HISTORY (II)

Polarization experiments at COSY:

PAX: towards **polarized anti-protons** \leftarrow proton "spin-filtering" expt. at COSY

→ Proof-of principle experiment (ERC AdG "POLPBAR" 2010-2016)

PRELUDE – COSY POLARIZATION HISTORY (II)

Polarization experiments at COSY:

<u>PAX</u>: towards **polarized anti-protons** \leftarrow proton "spin-filtering" expt. at COSY

→ Proof-of principle experiment (ERC AdG "POLPBAR" 2010-2016)

PRELUDE – COSY POLARIZATION HISTORY (III)

Polarization experiments at COSY:

Examples: spin manipulation;

Spin flipping efficiency of a proton beam (2.1 GeV/c) with an RF dipole (A. Krisch et al., 2004) hadronic reaction (\rightarrow **polarimetry**)

PRELUDE – COSY EDM HISTORY

- 2008: US SREDM collaboration EDM polarimetry experiments at COSY
- 2010: EDM at COSY starts JEDI collaboration: R&D, tests at COSY
- 2016: ERC AdG (PI H.S.) R&D, precursor experiment
- 2021: PBC, CYR, ESPP Update, JENAS Eol CPEDM collaboration
- > 2022: Staged approach; **PRESTO** application

→ COSY: the **best place** for R&D, tests w/ beam, first EDM measurements

INTRODUCTION – MOTIVATION EDM SEARCHES

- Science case: cosmology and particle physics:
 - Why is there **matter** and no **antimatter**?
 - Additional CP-violation
 - What is **Dark Matter** made of?
 - Axion (Axion-like particles)

Electric Dipole Moments (EDM) of particles:

- CP-violation, since P- and T-violating
- Axion/ALP search

INTRODUCTION – MOTIVATION EDM SEARCHES

Science case: status – EDM searches

no EDM found yet - excellent direct (n) / indirect (e, p) sensitivity limits (note: SM contribution negligible)

INTRODUCTION – MOTIVATION EDM SEARCHES

Science case: new approach – charged particles

Experimental input		Theoretical input	EDM sources	Goal
Direct measurements	Neutron (n) Proton (p) Deuteron (d) <u>Leptons</u> : Electron (e), Muon (μ), Tau (τ)	Quantum Chromo- Dynamics (QCD) Nuclear Theory	Quark EDM Quark-Chromo EDM Lepton EDM	FUNTHEOR
Indirect measurements	<u>Atoms</u> : → Nucleon (n,p) → Electron (e)	Nuclear Theory Atomic Theory		N Y T A L

→ direct EDM search for proton, deuteron: how?

INTRODUCTION – MEASUREMENT PRINCIPLE (I)

> Dipole moment (vector) || to particle spin:

> Movement of **particle spin** in external (magnetic, electric) fields:

INTRODUCTION – MEASUREMENT PRINCIPLE (II)

> Spin precession (**Thomas-BMT equation**):

→ B = 0: All-electric storage ring → "Frozen spin" – "magic momentum" (for G > 0; proton)

$$\vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{Q}}_{\text{MDM}} + \frac{\eta}{2} (\vec{E} + \underbrace{\vec{Q}}_{\text{EDM}}) \right] \times \vec{s}$$
$$= \vec{\Omega}_{\text{MDM}} = \vec{\Omega}_{\text{EDM}}$$

INTRODUCTION – MEASUREMENT PRINCIPLE (III)

EDM search for charged particles: beam of polarized protons (deuterons) in a storage ring - apply a radial electric field E:

Statistical uncertainty: with reasonable assumptions (beam intensity, EDM-spin interaction time, polarimeter efficiency, ...), a sensitivity of **10⁻²⁹ e.cm** can be achieved in one year of total measurement time :

→ Goal: reduce **systematic** uncertainty to a comparable level

INTRODUCTION – CHALLENGES (I)

All-electric:

simultaneous

- Particle's spin-response vastly different in for MDM and EDM:
 - EDM of 10⁻²⁹ e.cm (target sensitivity frequently given): spin rotation by **1.6 nrad/s** A radial magnetic field of ~ 10 aT mimics effects of a 10⁻²⁹ e.cm EDM
 - → Clockwise (CW) and counter-clockwise (CCW) circulating particles

Combined E/B fields: subsequent **CW-CCW** operation

\succ Realization:

. . .

bunch(es) of (10¹⁰) **polarized particles** (momentum spread, non-ideal orbits, ...) **storage ring** (technical limitations: alignment, field imperfections, stability, ...) **polarimetry** (efficiency, stability)

13

INTRODUCTION – CHALLENGES (II)

Storage time of high intensity beam(s) Measurement time (\rightarrow SCT) Beam emittance (phase-space cooling?)

> Hardware:

Electric bends (MV/m, electric discharge) Storage ring vacuum (cryogenics?) Polarimetry (non-destructive?) Large-scale magnetic shielding

> Other:

. . .

Alignment of ring elements, corrections Beam orbit determination and feedback Co-magnetometry

→ Strategy

EDM STAGE 1 – COSY AS R&D FACILITY

→ since 2010, significant fraction of beamtime for **JEDI** experiments

EDM STAGE 1 – COSY ACHIEVEMENTS (I)

> Optimization of **spin-coherence-time** (SCT):

rapid depolarization (momentum variations)

- \rightarrow beam bunching (isochronicity)
- \rightarrow electron cooling (momentum spread)
- \rightarrow sextupole field corrections, beam current limitation

measurement (deuteron beam)

- \rightarrow vertically polarized beam injected into COSY
- \rightarrow rotation of spins by RF solenoid; free precession
- \rightarrow 4x polarization determination (EDDA polarimeter)

EDM STAGE 1 – COSY ACHIEVEMENTS (I)

> Optimization of **spin-coherence-time** (SCT): $\sigma_{\text{stat}} \propto \tau_{\text{SCT}}^{-1}$

→ ~1000 s (orders-of-magnitude improvement; EDM observation time!)

EDM STAGE 1 – COSY ACHIEVEMENTS (II)

> Precision determination of **spin tune** (ST): (v_s , # spin precessions per turn)

ideal magnetic storage ring on closed orbit $v_s = \gamma G$ **real** machine:

- \rightarrow field imperfections
- \rightarrow magnet misalignments
- \rightarrow finite emittance

deviation of spin tune v_s

EDM STAGE 1 – COSY ACHIEVEMENTS (II)

quantity ever performed.

> Precision determination of **spin tune** (ST): (v_s , # spin precessions per turn)

→ Study accelerator stability, machine imperfections; "phase-lock": new precision tool for systematic effects in storage rings

EDM STAGE 1 – COSY ACHIEVEMENTS (III)

Bunch-selective spin manipulation with radio-frequency (RF) Wien filter

RF WF in COSY ring

Field plates inside **RF WF**

COSY in multi-bunch (e.g., 2) operation RF Wien filter in "**switching mode**" [on-off: $\tau \sim 20$ ns] (in contrast to "continuous mode") One bunch unaffected by Wien filter ("pilot bunch")

Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons https://doi.org/10.1016/j.nima.2016.05.012

EDM STAGE 1 – COSY ACHIEVEMENTS (III)

> Bunch-selective spin manipulation with radio-frequency (RF) Wien filter

RF WF in COSY ring

Field plates inside RF WF

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 828, 21 August 2016, Pages 116-124

Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons https://doi.org/10.1016/j.nima.2016.05.012

Nuclear Instruments and Methods in Physics

COSY in multi-bunch (e.g., 2) operation
RF Wien filter in "switching mode" [on-off: τ ~ 20 ns] (in contrast to "continuous mode")
One bunch unaffected by Wien filter ("pilot bunch")

→ opportunity for EDM measurement at COSY applied in 2nd "precursor" dEDM experiment

EDM STAGE 1 – COSY RESULTS (I)

EDM search: polarized deuteron beam

RF Wien filter (operation on harmonic of spin precession frequency) with **radial RF-E** and **vertical RF-B** fields: partially "frozen spin" \rightarrow EDM produces a vertical spin rotation

First result:

increase observed as expected!

Comments:

- polarization build-up ~ EDM
- **BUT**: many perturbations in COSY can produce such an effect
- need to be understood in order to deduce EDM limit: currently investigated
 - ... paper in preparation ...

EDM STAGE 1 – COSY RESULTS (II)

Axion search: polarized deuteron beam

Axion field gives rise to effective time-dependent θ_{QCD} term \rightarrow oscillating electric dipole moment

If precession frequency in magnetic ring (Ω_{MDM}) equal to $\omega_a = \frac{m_a c^2}{\hbar}$ (m_a ... axion mass) \rightarrow **resonant build-up**

Beam momentum change: Ω_{MDM} (\rightarrow m_a) scan: mass range covered: (4.96 – 5.02) x 10⁻¹⁰ eV

Axion will show up as jump in vertical polarization

EDM STAGE 1 – COSY RESULTS (II)

Axion search: polarized deuteron beam

Axion field gives rise to effective time-dependent θ_{QCD} term \rightarrow oscillating electric dipole moment

If precession frequency in magnetic ring (Ω_{MDM}) equal to $\omega_a = \frac{m_a c^2}{\hbar}$ (m_a ... axion mass) \rightarrow **resonant build-up**

Beam momentum change: Ω_{MDM} (\rightarrow m_a) scan: mass range covered: (4.96 – 5.02) x 10⁻¹⁰ eV

Axion will show up as jump in vertical polarization

EDM STAGE 1 – COSY RESULTS (II)

Axion search: polarized deuteron beam

Axion field gives rise to effective time-dependent θ_{QCD} term \rightarrow oscillating electric dipole moment

If precession frequency in magnetic ring (Ω_{MDM}) equal to $\omega_a = \frac{m_a c^2}{\hbar}$ ($m_a \dots$ axion mass) \rightarrow **resonant build-up**

Beam momentum change: Ω_{MDM} (\rightarrow m_a) scan: mass range covered: (4.96 – 5.02) x 10⁻¹⁰ eV

Axion will show up as jump in vertical polarization

Axion anomalous coupling to gluons g_{any}

→ Proof-of-principle; paper in preparation

EDM STAGE 2 – PROTOTYPE RING (I)

> 1st step: Design Study

PSR objectives:

- (i) **All-electric**: demonstrate CW/CCW beam storage, spin-coherence time, ...
- (ii) Combined E/B: frozen spin → first direct proton EDM measurement

Part. No.	Part. Short Name	Participant Organisation Name	Country
1	INFN	Istituto Nazionale di Fisica Nucleare	Italy
2	GSI	GSI Helmholtzzentrum für Schwerionenforschung	Germany
3	CERN	Organisation Européen pour la Recherche Nucléaire	Switzerland
4	MPG	Max-Planck-Gesellschaft zur Förderung der Wissenschaften EV	Germany
5	RWTH	Rheinisch-Westfälische Technische Hochschule Aachen	Germany
6	LIV	The University of Liverpool	United Kingdom
7	JAG	Uniwersitatet Jagiellonsky	Poland
8	TSU	Ivane Javakhishvili Tbilisi State University	Georgia

→ ERC application (*Research Infrastructure Concept Development*) 4/22

EDM STAGE 2 – PROTOTYPE RING (II)

1st step: Design Study

PRESTO work packages:

→ Conceptual Design Report (CDR) after 48 months

EDM STAGE 2 – PROTOTYPE RING (III)

> 2nd step: Realization

Host site: PRESTO aims at a **site-independent** design study

Green Field	Pre-prepared	Fully-receptive
Lab	Lab	Lab
No buildings available to house	Buildings to house the EDM	Buildings to house the EDM
the EDM facility; no previous	facility available; accelerator	facility available; storage ring
accelerator expertise; no experience	expertise available;	expertise and polarization
with polarization measurements	no polarization experience yet	experience available
 Optimal facility planning	 Moderate additional	 Minimal investment
from scratch Infrastructure (building)	investment cost	cost Shortest lead time Available expertise
 Longest lead time 	Some additional invest-	Possible compromises
 Missing experience to build/run facility 	source) required	due to existing boun- dary conditions

Funding: PRESTO will develop **strategy** for next steps (e.g., EU: ERIC, ESFRI, ...) and to acquire necessary resources

EDM STAGE 3 – FINAL PRECISION RING

Status:

CERN Yellow Report:

Storage ring to search for electric dipole moments of charged particles

Storage ring to search for electric dipole moments of charged particles: Feasibility study, CPEDM Collaboration CERN Yellow Reports: Monographs, CERN-2021-003 (CERN, Geneva, 2021) https://doi.org/10.23731/CYRM-2021-003.

Nuclear Physics News:

CPEDM: A Storage Ring Facility for Charged-Particle EDM Searches

Carli Christian, Lenisa Paolo, Jörg Pretz, Frank Rathmann & Ströher Hans (2021) CPEDM: A Storage Ring Facility for Charged-Particle EDM Searches, Nuclear Physics News, 31:2, 27-29, DOI: 10.1080/10619127.2021.1915027

SUMMARY

SUMMARY

STORAGE RINGS: From Hadron Physics to Precision Measurements

European Research Council

Prof. Dr. Dr. h.c. mult. Hans Ströher h.stroeher@fz-juelich.de

ERC AdG srEDM (694340)