



# Development of Closed Orbit Diagnostics toward EDM Measurements at COSY in Jülich

March 17, 2016 | Fabian Hinder<sup>1, 2</sup> for the JEDI collaboration DPG Frühjahrstagung | Darmstadt



3/17/2016

Fabian Hinder (f.hinder@fz-juelich.de)



## Electric Dipole Moments (EDMs) as CP Violating Source



- $\mathcal{H} = -\vec{\mu} \cdot \vec{B} \vec{d} \cdot \vec{E}$  $\mathcal{P}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$  $\mathcal{T}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$ 
  - Permanent EDMs of light hadrons are  $\mathcal{T}$ -violating
    - $\mathcal{CPT}$  theorem  $\Rightarrow \mathcal{CP}$  violation
- Search for new CP violation by measuring EDMs of charged particles in storage rings
- SM:  $d \approx 10^{-31} ecm$



## **Measure EDMs in Storage Rings** (Frozen Spin Method)

All EDM experiments:

- Particle in trap
- Interaction of field  $\vec{E}$  and EDM  $\vec{d}$ 
  - $\rightarrow$  Spin rotates
- Charged particles: Lorentz force
- Accelerator as trap for charged particles



Mitglied der Helmholtz-Gemeinschaft

## **Spin Motion in Storage Rings**

Thomas-BMT-Equation:

 $\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$  $\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \left( \gamma G \vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$  $\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$ 

 $\vec{\mu} = 2(G+1)\frac{q}{2m}\vec{S}$ 

$$\vec{d} = \frac{q\eta}{2mc}\vec{S}$$

|          | G            |
|----------|--------------|
| Proton   | 1.792847357  |
| Deuteron | -0.142561769 |





## **Spin Motion in Storage Rings** (Pure Electric Ring)

Thomas-BMT-Equation:

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \left( \gamma G \vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$
$$\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

Pure electric ring:

- "Freeze" spin  $\Rightarrow \overrightarrow{\Omega}_{MDM} = 0$
- Only possible for Protons (G>0)

|          | G            |
|----------|--------------|
| Proton   | 1.792847357  |
| Deuteron | -0.142561769 |



# Spin Motion in Storage Rings (Combined Ring $\vec{E} \& \vec{B}$ )

Thomas-BMT-Equation:

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \left( \gamma G \vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$
$$\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

Pure electric ring:

- "Freeze" spin  $\Rightarrow \vec{\Omega}_{MDM} = 0$
- Only possible for Protons (G>0)

Combined ring  $(\vec{E} \& \vec{B})$ :

• Frozen spin possible for Protons and Deuterons

|          | G            |
|----------|--------------|
| Proton   | 1.792847357  |
| Deuteron | -0.142561769 |



## Spin Motion in Storage Rings (Pure Magnetic Ring)

Thomas-BMT-Equation:

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \left( \gamma G \vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$
$$\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

Pure electric ring:

- "Freeze" spin  $\Rightarrow \vec{\Omega}_{MDM} = 0$
- Only possible for Protons (G>0)
- Combined ring  $(\vec{E} \& \vec{B})$ :
- Frozen spin possible for Protons and Deuterons Pure magnetic ring:
  - Frozen spin not possible ( $v_s = \gamma G$ )

|          | G            |
|----------|--------------|
| Proton   | 1.792847357  |
| Deuteron | -0.142561769 |



## Spin Motion in Storage Rings (Pure Magnetic Ring)

Thomas-BMT-Equation:

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \left( \gamma G \vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$
$$\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

Pure electric ring:

- "Freeze" spin  $\Rightarrow \overrightarrow{\Omega}_{MDM} = 0$
- Only possible for Protons (G>0)

Combined ring  $(\vec{E} \& \vec{B})$ :

• Frozen spin possible for Protons and Deuterons

Pure magnetic ring:

• Frozen spin not possible ( $v_s = \gamma G$ )

New method proposed to measure EDMs at COSY Jülich





 $\vec{\Omega}_{MDM} = \frac{q}{m\gamma} \gamma G \vec{B}$  $\vec{\Omega}_{EDM} = \frac{q\eta}{2m} \vec{\beta} \times \vec{B}$ 

## **Resonant Wien Filter Method\***

#### (Idea of First Direct Deuteron EDM Measurement)

- EDMs introduce vertical component of an horizontal polarized beam
- RF device used to accumulate this signal
- Device in Wien filter configuration to cancel beam perturbation
- Measure vertical polarization build-up  $(S_y \text{ per particle turn } n)$

in  $t_{meas} \approx 1000s$ 



emeinschaft



## **Systematic Effects I**

Misaligned magnets lead to

- polarization build up
- orbit distortion
- Correct orbit to minimize polarization build up





#### **Systematic Effects II**





## **Rogowski BPM for RF Wien Filter**



Installation of RF Wien Filter between quadrupoles

- Installation of Rogowski Coil BPMs at both ends
- Position beam in centre and parallel to Wien Filter

## **Rogowski Coil**

Pickup-Coil to measure the magnetic flux: Torus with:

- Major radius R = 40 mm
- Minor radius a = 5 mm
- Winding with copper wire N = 350 for each segment
- Divided into
  - Four segments (BPM in horizontal and vertical plane)









Fabian Hinder (f.hinder@fz-juelich.de)



## **Position Calculation**

Induced Voltage:  $U_i \propto \dot{I}$ 

Horizontal:

$$x = \frac{\pi\sqrt{R^2 - a^2}}{2} \frac{(U_1 + U_2) - (U_3 + U_4)}{\Sigma U_i}$$





$$y = \frac{\pi\sqrt{R^2 - a^2}}{2} \frac{(U_1 + U_4) - (U_2 + U_3)}{\Sigma U_i}$$

3/17/2016

Vertical:



#### **Measurement Setup**





#### **Orbit Bump & Rogowski BPM**



3/17/2016



#### **Rogowski BPMs Linearity**



- No "jumps" within this range
- Installation in new RF Wien filter

Mitglied der Helmholtz-Gemeinschaft



#### **Orbit Correction**



Determining the Orbit Response Matrix Two methods:

- 1. Calculate ORM from optics ( $\beta$ ,  $\phi$ ,  $\nu$ , D and  $\eta$ )
- 2. Measure ORM model independent



#### **ORM Measurement**

#### (Model independent)

 $\frac{\overline{\theta_x}}{\overline{\theta_v}}$ 

 $= M_{ORM} \cdot$ 

- 1. Change corrector magnet
- 2. Measure beam position at all BPMs
- 3. Repeat 1 and 2
- 4. Fit linear function for each BPM corrector combination



# New Automated ORM Measurement



Mitglied der Helmholtz-Gemeinschaft

IÜLICH

FORSCHUNGSZENTRUM

Mitglied der Helmholtz-Gemeinschaft





#### **Results II**











Offset in BPM electronics influences ORM measurement



#### **Orbit Correction**

$$\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} = M_{ORM} \cdot \begin{pmatrix} \overrightarrow{\theta_x} \\ \overrightarrow{\theta_y} \end{pmatrix} \quad \Rightarrow \quad \Delta \begin{pmatrix} \overrightarrow{\theta_x} \\ \overrightarrow{\theta_y} \end{pmatrix} = M_{ORM}^{-1} \cdot \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}_{uncorrected}$$



Mitglied der Helmholtz-Gemeinschaft

3/17/2016

 $10^{-3}$ 

10<sup>-2</sup>

10<sup>-1</sup>

 $10^{-9}$ 

10

10-11

 $10^{-1}$ 

10-13

10-1

Mitglied der Helmholtz-Gemeinschaft

2.5

1.5

0.5

0<sup>L</sup>

5

35

ЭÐ

40



Vertical buildup  $\Delta S_v$  per turn for RMS of 2 mm

similar to  $\eta = 10^{-4}$  ( $d = 5 \cdot 10^{-19}$ e cm)

 $\Delta y_{_{RMS}} \stackrel{1}{(Quads)} in mm^{10}$ 

Matter – Antimatter Asymmetry

#### **Summary**



New Rogowski BPM

Calculated RMS values

Measured RMS values

30

Number of used singular values

<del>50000000</del>0

20

25

15

10





le norallal devalance ant of arbit constral, anin airevia

Installation of RF Wien Filter end 2016

- In parallel development of orbit control, spin simulations and upgrade of BPM system
- Perform first direct EDM measurement for deuterons



- **JEDD JÜLICH** ORSCHUNGSZENTRUM
- In parallel development of orbit control, spin simulations and upgrade of BPM system
- Perform first direct EDM measurement for deuterons

Installation of RF Wien Filter end 2016



mholtz-Gemeinschaft

der Hel