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PHYSICAL MOTIVATIONSPHYSICAL MOTIVATIONS

Electric Dipole Moment of fundamental particles

matter

Anti-matter
Matter

BARYOGENESIS

Origin Now

Sakharov's conditions (1967):

                          violation

 C and CP violation

 Far from thermal equilibrium

 

Standard Model (SM):
 Not enough to explain Baryon Asymmetry

 Too small CP violation

WHY?

See “Electrice Dipole Moment measurements at 
storage rings” by J. Pretz 
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EDM theoretical predictions and 
experiments

neutron*

electron*

p,d
10-29 e cm

Present limits

J.M. Pendlebury and E.A. Hinds
NIM A 440 (2000) 471
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Future goal storage ringsstorage rings

8,7×10−29 e⋅cm

* The ACME collaboration 
Science 343, p. 269-272 (2014) 

* C.A. Baker et al.,
 Phys. Rev. Lett. 97, 131801 (2006)
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Because SM contributions are small
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New CP violation sources!
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parity violation in neutron scattering from nuclei  

Neutral systems

heavy atoms, molecules and neutrons

Method: apply electric field

measure energy shift  
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EDM EXPERIMENTSEDM EXPERIMENTS

1951 Purcell and Ramsey: 

parity violation in neutron scattering from nuclei  

Neutral systems

heavy atoms, molecules and neutrons

Method: apply electric field

measure energy shift  

 

 

STORAGE RING as trap for POLARIZED charged 
particles beams

DOES NOT 
WORK

 for 
charged 
particles

New method:

Charged particles



  

HOW TO: charged particle EDMHOW TO: charged particle EDM

EDM signal = spin precession 
in the vertical plane

Storage ring

 spin

v

B
lab

E
pf

All rings have inward electric field in particle frame
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All rings have inward electric field in particle frame



  

HOW TO: charged particle EDMHOW TO: charged particle EDM

Minimal detectable precession

Assuming

DEUTERON CASE

θ≈10−6 rad

d≈10−29e⋅cm
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Feasibility 
studies @ 

COSY!!



  

SCT STUDIES @ COSYSCT STUDIES @ COSY

AIM

Demonstrate sextupole fields can counteract the spread of spin tunes 

associated with emittance and (Δp/p)2 of a deuteron beam.
Second order effects!

In combination with beam preparation based on 

● eCooling to shrink transverse and longitudinal beam size 

● Bunching to remove first order Δp/p contribution
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AIM

Demonstrate sextupole fields can counteract the spread of spin tunes 

associated with emittance and (Δp/p)2 of a deuteron beam.

MXG MXL MXS

RF Solenoid 
to move the polarization 
into the horizontal plane

EDDA is the  
polarimeter

Sextupole families 
located in the arcs

large D large β
y

large β
x

Second order effects!

In combination with beam preparation based on 

● eCooling to shrink transverse and longitudinal beam size 

● Bunching to remove first order Δp/p contribution



  

Beam preparationBeam preparation

Polarized deuterons at p=0,97 GeV/c
Bunched beam
Horizontal polarization with RF solenoid

10 30 50 70

eCooling
Bunching
Extraction

Polarization rotation

10 30 50 70

eCooling

Bunching
Extraction

Hor. Heating

Polarization rotation

Large
(Δp/p)2

Large
Horizontal
Emittance

Storage time (s)

Storage time (s)



  

Experimental setupExperimental setup

Polarimeter: EDDA

Asymmetries L/R -->p
v
   and   U/D -->p

h

Beam extraction 

continuous extraction with white 
noise applied to electric field plates 
(vertical direction, y axis)

beam

Carbon target
Elastic scattering events 
(high spin sensitivity)

17 mm



  

  Data Acquisition (DAQ)Data Acquisition (DAQ)

● Timing → Count turn number n (bunched beam)

● Compute total spin precession angle

● Bin by phase φ the spin precession angle circle

● Compute asymmetry in each bin

ϵh=
U−D
U +D

θs=2 πG γ n

*Z. Bagdasarian et al., Phys. Rev. ST 
Accel. Beams 17, 052803 (2014)

As the polarization rotates
The  ε

h
 reflects the sideways

projection of the polarization.
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Sextupole effectSextupole effect

Decoherence sources

Δ νs=G Δγ

Betatron oscillations increase 
particle path length 

Spin Tune spread:

Ideal particle

Δν
S

4Δν
S

Δ L
L
∝
θx

2
+θ y

2
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Bunching freezes the revolution 
frequency 

z

x 2 θ
x

θ
x

Δ γ
γ ∝

Δ L
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Decoherence sources Sextupole magnets
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1
SCT

=∣A+a1S +a2 L+a3G∣ θ x
2

+∣B+b1S +b2 L+b3G∣ θy
2

+∣C+c1S +c2 L+c3G∣(Δ pp )
2

Sextupole effectsSextupole effects

SCT dependence on sextupoles

Drivers: 
- beam widths 
- 2nd order mom. 
spread

Sextupole fields 
MXS, MXL, MXG
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Sextupole effectsSextupole effects

SCT dependence on sextupoles

Wide profile

Narrow profile

Medium profile

MXS

HORIZONTALLY (x) wide beam

MXL=MXG=0

34

SCT =
Gaussian width

2012 DATA



  

Sextupole effectSextupole effect

SCT dependence on sextupoles

1
SCT

=∣A+a1S∣θx
2

Zero crossing: MXS=5,4 m-3

Wide profile

Narrow profile

Medium profile

MXS

● Flip 1/SCT sign above zero 
crossing

● Different slopes 

● SCT
 
does not go to infinity. 

Point near zero may be above 
or below the line due to other 
contributions.

 The same zero crossing,
 independent of horizontal width

HORIZONTALLY (x) wide beam

MXL=MXG=0

2012 DATA



  

Chromaticity = ZEROChromaticity = ZERO

Cromaticity ξ Q = tune, number of betatron socillation per turn 
ΔQ x , y

Q x , y

=ξx , y
Δ p
p

Picture from 
Ed. J. Stephenson

A unique combination of 
MXG, MXS and MXL ξ=0 ⇒

Δ L
L
=0⇒

Δ γ
γ =0 ⇒

Δ νs
νs
=0

2014 DATA



  

Cromaticities = 0

Picture from Ed. J. Stephenson

y=a+bx

SCT≈-a/b

Chromaticity = ZEROChromaticity = ZERO

PRELIMINARY from 
the online analysis

2014 DATA



  

Cromaticities = 0

Picture from Ed. J. Stephenson

y=a+bx

SCT≈-a/b

Chromaticity = ZEROChromaticity = ZERO

PRELIMINARY from 
the online analysis

Large Hor. Emittance

2014 DATA



  

ConclusionsConclusions
A non-zero EDM  within the actual experimental limits  would be a clear 
probe of new physics

Fundamental requirement for the EDM experiment on charged particles is 1000 s SCT
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may be substantially extended (up to ~ 1000 s) through a combination of:

This meets the requirement for a storage 
ring to search for an EDM.

● beam bunching on the first harmonic,
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● both X and Y chromaticities are zero.
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ConclusionsConclusions

It has been demonstrated that the lifetime of a horizontally polarized deuteron beam 
may be substantially extended (up to ~ 1000 s) through a combination of:

FUTURE

systematic error studies

 spin tracking simulations

 polarimeter

 development of a new ring

This meets the requirement for a storage 
ring to search for an EDM.

● beam bunching on the first harmonic,
● electron cooling
● combination of SEXTUPOLE families
● both X and Y chromaticities are zero.

A non-zero EDM  within the actual experimental limits  would be a clear 
probe of new physics

Fundamental requirement for the EDM experiment on charged particles is 1000 s SCT



  

THANKS 
FOR YOUR 
ATTENTION

JEDI collaboration @ Juelich



  

CP violating sources

If a non-zero deuteron EDM is 
measured, it would have a special 
sensitivity to the chromo-EDM due to 
the large coefficient of ∆− .

STANDARD MODEL

SUSY

PHYSICAL MOTIVATIONSPHYSICAL MOTIVATIONS

∣d n∣=∣d p∣≃4,5⋅10−15
θQCD

Δ
+
=d up

c
+d down

c
Δ
−
=d up

c
−d down

c

d n=1,4Δ+0,83Δ+−0,27Δ−

d p=1,4 Δ+0,83Δ++0,27Δ−

d d=d up+d down−0,2Δ+−6Δ−

● Chromo-EDM: EDM generated by a loop 
with SS-particle

● Weak interaction: complex phase δ in CKM quark mixing matrix

● Strong interaction: θ
QCD 

d d=0

The EDM measurement of several 
particles is needed to determine the 
CP violating sources scenario.

● quark-EDM Δ=d down−d up / 4

∣d n
exp
∣⩽10−26 e⋅cm ⇒ θQCD⩽10−11

Axion search
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