STORI'14: 9th International Conference on Nuclear Physics at
Storage Rings

September 28th — October 3rd, 2014
St. Goar (Germany)

SPIN COHERENCE TIME studies
of a POLARIZED DEUTERON heam @ COSY

On behalf of the JEDI Collaboration

6. Guidoboni
University of Ferrara and INFN



PHy SICAL MO".IVA“ONS See “Electrice Dipole Moment measurements at

storage rings” by J. Pretz
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Standard Model (SM):
* Not enough to explain Baryon Asymmetry

* Too small CP violation
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PHYSICAL MOTIVATIONS

Electric Dipole Moment of fundamental particles

Origin Now Def: permanent charge

m WHY? displacement within the particle
W E—) volume |

BARYOGENESIS d=EDM

Sakharov's conditions (1967): p=spin
* B=np,—mnp violation
* C and CP violation

* Far from thermal equilibrium

Assuming CPT symmetry

Standard Model (SM):

iolation = CP violation
* Not enough to explain Baryon Asymmetry T violation = CP violatio

EDM sy too small to be observed

* Too small CP violation
EDM, _within exp. limits
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New CP violation sources!




EDM EXPERIMENTS

Neutral systems

1951 Purcell and Ramsey:

parity violation in neutron scattering from nuclei

heavy atoms, molecules and neutrons

Method: apply electric field E

measure energy shift d-E
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EDM EXPERIMENTS

Neutral systems

1951 Purcell and Ramsey:

parity violation in neutron scattering from nuclei

DOES NOT
heavy atoms, molecules and neutrons WORK

- for
Method: apply electric field E charged

particles

measure energy shift d-E

Charged particles
New method:

STORAGE RING as trap for POLARIZED charged
particles beams




HOW TO: charged particle EDM

Storage ring

All rings have inward electric field in particle frame

dS . o  EDM signal = spin precession
™ =d X in the vertical plane
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HOW TO: charged particle EDM

Storage ring

All rings have inward electric field in particle frame

dS . o  EDM signal = spin precession

™ =d X in the vertical plane

TO DO: FREEZE the spin along the velocity

From the Thomas-BMT equation:
2
5 =—4/GB+|G-|Z
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Spin precession in the horizontal plane

4>
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Particle revolution frequency

2

G= £7 2 Anomalous magnetic moment

2
Find E (radial) and B fields combination!
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DEUTERON CASE

Frozen spin orbit
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® Spin aligned with velocity for
t>1000 s
(see spin coherence time later)




HOW TO: charged particle EDM

DEUTERON CASE

Frozen spin orbit
»,=0

® Minimal detectable precession  6~10 °rad
® Assuming d~10 Ye-cm

®Possible ring:  E,,=17MV/I/m B,,=042T p=15GeV/c

\

d _
GEDM:%(Elab-l-VBlab) N(lo 9rad/s)t . 0 NIO_lsrad
EDM

turn

1 turn~10"°%s

® 10° turns needed to detect EDM signal

® Spin aligned with velocity for
t>1000 s
(see spin coherence time later)

» Is this an issue? YES!
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At injection: After some time:

all the spins are aligned Particles have different velocities
and trajectories
Spins out of phase in the

horizontal plane s Horizontal polarization vanishes!




SPIN COHERENCE TIME (SCT)

Vertical direction (Y axisy——  stable spin direction

Spin tune v = G y number of spin precession per turn

Anomalous/ Relativistic gamma
magnetic moment

SCT
Horizontal pol.
Lifetime

Observation time

At injection: After some time:

all the spins are aligned Particles have different velocities
and trajectories
Spins out of phase in the

horizontal plane s Horizontal polarization vanishes!




SPIN COHERENCE TIME (SCT)

Vertical direction (Y axisy——  stable spin direction

Spin tune VS:G y number of spin precession per turn

Anomalous/ Relativistic gamma
magnetic moment

At injection: After some time:

all the spins are aligned Particles have differenty
and trajectories
Spins out of phase in thée

horizontal plane = Ho

SCT
Horizontal pol.
Lifetimg

Feasibility
studies @
COSY!!

ontal polarization vanishes!




SCT STUDIES @ COsY
AlM

Demonstrate sextupole fields can counteract the spread of spin tunes

associated with emittance and (Ap/p)? of a deuteron beam.
Second order effects!

In combination with beam preparation based on
« eCooling to shrink transverse and longitudinal beam size

* Bunching to remove first order Ap/p contribution
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Demonstrate sextupole fields can counteract the spread of spin tunes

associated with emittance and (Ap/p)? of a deuteron beam.
Second order effects!

In combination with beam preparation based on

« eCooling to shrink transverse and longitudinal beam size

* Bunching to remove first order Ap/p contribution
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Beam preparation

Polarized deuterons at p=0,97 GeV/c
Bunched beam
Horizontal polarization with RF solenoid

I eCooIing

Large
(Ap/p)? Extraction
Polarization rotation
| | >
Storage time (s)

eCooling
Large Hor. Heating
Horizontal
Emittance Extraction
Polarization rotation
| | -
Storage time (s)




Experimental setup

Beam extraction Polarimeter: EDDA

continuous extraction with white Asymmetries L/R -->p_ and U/D -->p_
noise applied to electric field plates
(vertical direction, y axis)

Carbon target

Elastic scattering events
(high spin sensitivity)

LEFT DOWN




Data Acquisition (DAQ)

Timing — Count turn number n (bunched beam)

Compute total spin precession angle
0.=2nGyn

Bin by phase ¢ the spin precession angle circle

Compute asymmetry in each bin

_U-D
U+D

€

As the polarization rotates
The € reflects the sideways

projection of the polarization.

*Z. Bagdasarian et al., Phys. Rev. ST
Accel. Beams 17, 052803 (2014)
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Timing — Count turn number n (bunched beam)

Compute total spin precession angle
0,=2aGyn

Bin by phase ¢ the spin precession angle circle

Compute asymmetry in each bin
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Sextupole effect

Decoherence sources

Spin Tune spread: Av . =G Ay

Betatron oscillations increase
particle path length
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Sextupole effect

to be corrected with
Decoherence sources » Sextupole magnets
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Sextupole effects

SCT dependence on sextupoles

SCLT:|A+a1S+a2L+a3G 0

+|B+b,S+b,L+b,G) 6,

+|C+c¢,S+c,L+c,G]

Drivers:
- beam widths
- 2" order mom.
spread
Sextupole fields
MXS, MXL, MXG




Sextupole effects
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Sextupole effect

SCT dependence on sextupoles
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* Flip 1/SCT sign above zero
crossing

 Different slopes

o SCT does not go to infinity.

Point near zero may be above
or below the line due to other
contributions.

* The same zero crossing,
independent of horizontal width
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Chromaticity = ZERO

AQx,y: Ap

Cromaticity & 0 STE
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A unique combination of
MXG, MXS and MXL S

Chromaticity in
MXG x MXS plane.
MXL = -2.0 %.

Note the overlap of
the two dotted lines
that represent

the places where
the chromaticities
vanish.
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Chromaticity = ZERO
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Both transverse (X) and longitudinal spreads
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The longest polarization lifetimes are found
near the middle of this range.
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in this plane — errors ~ 1 %
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Make scans in 2D MXS x MXG space with
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@ Horizontal heating (large X emittance)
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Both transverse (X) and longitudinal spreads
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A non-zero EDM within the actual experimental limits would be a clear
probe of new physics

Fundamental requirement for the EDM experiment on charged particles is 1000 s SCT
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probe of new physics

Fundamental requirement for the EDM experiment on charged particles is 1000 s SCT

It has been demonstrated that the lifetime of a horizontally polarized deuteron beam
may be substantially extended (up to ~ 1000 s) through a combination of:

 beam bunching on the first harmonic,
 electron cooling

e combination of SEXTUPOLE families
 pboth X and Y chromaticities are zero.

Asymmetry

This meets the requirement for a storage
| |||| ring to search for an EDM.




A non-zero EDM within the actual experimental limits would be a clear
probe of new physics

Fundamental requirement for the EDM experiment on charged particles is 1000 s SCT

It has been demonstrated that the lifetime of a horizontally polarized deuteron beam
may be substantially extended (up to ~ 1000 s) through a combination of:

 beam bunching on the first harmonic,
 electron cooling

e combination of SEXTUPOLE families
 pboth X and Y chromaticities are zero.

_ This meets the requirement for a storage
il ring to search for an EDM.

FUTURE

Time fsoc] - systematic error studies

4 spin tracking simulations
4 polarimeter

2 development of a new ring
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PHYSICAL MOTIVATIONS

CP violating sources

STANDARD MODEL
» Weak interaction: complex phase & in CKM quark mixing matrix

« Strong interaction: 0 ach

|d,|=|d |=4,510""6,, » |d0<10  e-om = 0,0,<107"
J.=0 Axion search
e

SUSY
e quark-EDM A=d

—d /4 If a non-zero deuteron EDM is
up

_ measured, it would have a special
* Chromo-EDM: EDM generated by a loop | gensitivity to the chromo-EDM due to

down

with SS-particle
A+:dzp+dc A_:d;p—dc

down down

the large coefficient of A™ .

d =1,4A+0,83A"—0,27A" The EDM measurement of several
dp= 14A+0.83A% +0.27A particles is needed to determine the

CP violating sources scenario.
dd :dup+ ddown_ 072 A+ @_
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