31st CANU and 8th JCHP-FFE Workshop Physikzentrum Bad Honnef, December 16 and 17, 2013

Spin Coherence Time Studies at COSY

<u>Greta Guidoboni</u>

University and INFN of Ferrara

How to measure the EDM of a charged particle

Electric Dipole Moment (EDM)

- charge displacement within the particle volume
- Lies along the spin axis

Technical issue: vertical axis = the stable spin direction 1) Spin tune → RF solenoid rotates the At injection: vertically polarized polarization into the horizontal (ring) plane Spin tune $|v_s = G \gamma_k|$ number of spin precessions per turn Anomalous. Relativistic gamma ring magnetic moment 2) Spin Coherence Time Horizontal pol. Lifetime **Observation time** \vec{s} **Spin coherence** time After some time: At injection: Particles have different velocities all the spins are aligned Bunching the beam Spins out of phase in the removes first-order spread horizontal plane from Δp/p

AIM

Demonstrate sextupole fields can counteract the spread of spin

tunes associated with **emittance** and $(\Delta p/p)^2$.

Second order effects!

History

2012: First direct measurement of SCT

- Dedicated **DAQ** to measure horizontal polarization as a function of time.
- Slow beam extraction onto a thick carbon target
- **Bunched beam** to remove first order momentum spread distribution ($\Delta p/p$).

1) EXPERIMENTAL SETUP Bunched beam (h=1) Polarized DEUTERON beam with p=0.97 GeV/c Horizontal polarization with RF solenoid

Beam preparation

Because of limited vertical acceptance in the arcs, vertical emittance was not available for study

1) EXPERIMENTAL SETUP

2) DATA ACQUISITION SYSTEM

3) LONGITUDINAL profile measurements

DAQ provides particle positions in the ring as a function of the storage time

3) LONGITUDINAL profile measurements

DAQ provides particle positions in the ring as a function of the storage time

Circumference (ns)

4) EMITTANCE profile measurements

Run Summaries

	May 2012	Feb 2013	Aug 13
BCT	6*10^8	2*10^9	1*10^9
Target	Tube	Tube	Ridge
Extraction	Ramped	Ramped	White noise/Ramped
Large Hor. Emittance	Yes	Yes	Yes
Large DeltaP/P	No	No	Yes
Aim	Correction of emittance effect on SCT with sextupole (MXS)	Correction of emittance effect + chromaticity measurements	Correction of emittance effect and 2nd order DeltaP/P effects with sextupoles. (2-D map MXS-MXG)
Comments	Proved!	50 Hz=Rate effect	Wonderful set of data

Results: May 2012

Sextupole field corrections for horizontal emittance effects

Spin Coherence Time =**SCT** extracted from TEMPLATE BASED ANALYSIS

Results: May 2012

Sextupole field corrections for horizontal emittance effects

Spin Coherence Time =**SCT** extracted from TEMPLATE BASED ANALYSIS

Results: Aug 2013

Results: Aug 2013

 $\begin{cases} MXS: 6-poles where \beta_x is large \\ MXG: 6-poles where D is large \end{cases}$

Results: Aug 2013

 $\begin{cases} MXS: 6-poles where \beta_x is large \\ MXG: 6-poles where D is large \end{cases}$

Wide horizontal profile

- Balck dots=data points
- **Red line**=template function based on **Gaussian spin distribution**

Wide horizontal profile

- Balck dots=data points
- **Red line**=template function based on **Gaussian spin distribution**

Wide horizontal profile

- Balck dots=data points
- **Red line**=template function based on **Gaussian spin distribution**

Wide $\Delta p/p$ distribution

We probably need **new template curves**

- the distribution of synchrotron amplitudes is not gaussian

- synchrotron oscillations are not simple harmonic solution (sinusoidal potential)

Wide $\Delta p/p$ distribution

Extraction method: Ramping changes the spin tunes

small Froissart-Stora scan that flips the polarization

It may be possible to reproduce the data with "no-lattice" model.

Conclusions

HUGE SET OF DATA to analyze!!

Sextupole fields are powerful tools with which to extend the lifetime of in-ring-plane polarization.

Because of correlations between the different sources of decoherence, it was not possible to find sextupole settings that even in combination minimize more than one source of decoherence

Sextupole fields must be used in combination with beam preparation that reduces the decoherence source terms in order to achieve the polarization lifetime goals of the EDM storage ring

Serious theoretical effort is needed to understand the connections between difference sources of decoherence.

THANKS TO ALL WHO HELPED:

Zara Bagdasarian Susanna Bertelli Jan Bsaisou Stas Chekmenev David Chiladze **Giuseppe Ciullo** Sergey Demov Dennis Eversmann Martin Gaisser Ralf Gebel Boxing Gou Greta Guidoboni Volker Hejny Fabian Hinder Vsevolod Kamerdziev Andreas Lehrach Paolo Lenisa Bernd Lorentz Paul Maanen **Rudolf Maier**

David Mchedlishvili Sebastian Mey Bill Morse Alexander Nass Andrea Pesce Dieter Prasuhn Jörg Pretz Frank Rathmann Marcel Rosenthal Artem Saleev Vera Schmakova Yurij Senichev Ed Stephenson Hans Stockhorst Hans Ströher Pia Thorngren Christian Weidemann Peter Wüstner Denis Zyuzin

Thanks for your attention!