

First direct hadron EDM measurement with deuterons using COSY – A realistic strategy toward a dedicated EDM ring –

Frank Rathmann (on behalf of the JEDI collaboration)

Willy Haeberli Memorial Symposium

June 19 - June 20, 2022

https://www.physics.wisc.edu/haeberli-symposium/

First direct hadron EDM measurement with deuterons using COSY

Contents

Introduction

- Baryon asymmetry in the Universe
- Electric dipole moments
- Frozen-spin method and magic machines
- Progress toward storage ring EDM experiments
 - Spin coherence time, spin tune, and phase lock
- 8 First direct deuteron EDM measurement using COSY
 - RF Wien filter method
 - Technical realization of RF Wien filter
 - Fast RF switches and pilot bunch
 - Measurements of EDM-induced polarization buildup
- Outlook
 - From JEDI to CPEDM: a prototype EDM storage ring

Summary

Baryon asymmetry in the Universe

Carina Nebula: Largest-seen star-birth regions in the galaxy

Observation and expectation from Standard Cosmological Model (SCM):

	$\eta = (n_b - n_{ar{b}})/n_\gamma$	
Observation	$\left(6.11^{+0.3}_{-0.2}\right)\times10^{-10}$	Best Fit Cosmological Model [1]
	$(5.53-6.76) imes 10^{-10}$	WMAP [2]
Expectation from SCM	$\sim 10^{-18}$	Bernreuther (2002)[3]

• SCM gets it wrong by about 9 orders of magnitude.

Electric dipole moments (EDMs)

For particles with EDM \vec{d} and MDM $\vec{\mu}$ ($\propto \vec{s}$),

• non-relativistic Hamiltonian:

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

• Energy of magnetic dipole invariant under P and T:

$$-\vec{\mu}\cdot\vec{B} \stackrel{\text{P or } T}{\longrightarrow} -\vec{\mu}\cdot\vec{B}$$

No other direction than spin $\Rightarrow \vec{d}$ parallel to $\vec{\mu}$ (\vec{s}).

• Energy of electric dipole $H = -\vec{d} \cdot \vec{E}$, includes term $\vec{s} \cdot \vec{E} \xrightarrow{P \text{ or } T} -\vec{s} \cdot \vec{E}$,

Thus, EDMs violate both *P* and *T* symmetry

- EDMs possibly constitute the missing cornerstone to explain surplus of matter over antimatter in the Universe.
 - Non-vanishing EDMs would add 4^{th} quantum number to fundamental particles (besides *m*, *q*, and *s*).

Motivation

Large worldwide effort to search for EDMs of fundamental particles:

- hadrons, leptons, solids, atoms and molecules.
- $\bullet\,\sim$ 500 researchers (estimate by Harris, Kirch).

Why search for charged particle EDMs using a storage ring?

- 1. Up to now, no direct measurement of charged hadron EDM available:
- 2. Charged hadron EDM experiments provide potentially higher sensitivity than for neutrons:
 - longer lifetime,
 - more stored polarized protons/deuterons available than neutrons, and
 - one can apply larger electric fields in storage ring.
- 3. Approach complimentary to neutron EDM searches.

Theorists keep repeating that

EDM of single particle not sufficient to identify CP violating source [4]

Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [5]:

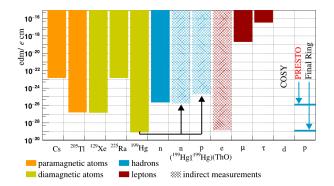
• CP and P conserving magnetic moment \approx nuclear magneton μ_N .

$$\mu_N = \frac{e}{2m_p} \sim 10^{-14} \,\mathrm{e\,cm}.$$

- A non-zero EDM requires:
 - P violation: price to pay is $pprox 10^{-7}$, and
 - CP violation (from K decays): price to pay is $\sim 10^{-3}$.
- In summary:

$$|d_{\it N}|\sim 10^{-7} imes 10^{-3} imes \mu_{\it N} \sim 10^{-24}\,{
m e\,cm}$$

• In Standard model (without θ_{QCD} term):


 $|d_{\sf N}| \sim 10^{-7} imes 10^{-24}\,{
m e\,cm} \sim 10^{-31}\,{
m e\,cm}$

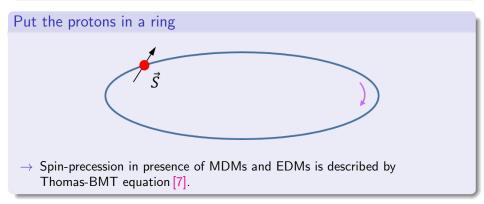
Region to search for Beyond Standard Model (BSM) physics

• from nucleon EDMs with $\theta_{QCD} = 0$:

$$10^{-24} \,\mathrm{e\,cm} > |d_N| > 10^{-31} \,\mathrm{e\,cm}$$

Status of EDM searches [6, CYR '21]

Missing are *direct* EDM measurements:


- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from $^{199}_{80}$ Hg.
- No measurement at all of deuteron EDM.

Spin precession of particles with MDM and EDM

In rest frame of particle,

• equation of motion for spin vector \vec{S} :

$$\frac{\mathrm{d}\vec{S}}{\mathrm{d}t} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}.$$

(2

Frozen-spin

Spin precession frequency of particle *relative* to direction of flight:

$$\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}} = -\frac{q}{\gamma m} \left[G \gamma \vec{B}_{\perp} + (1+G) \vec{B}_{\parallel} - \left(G \gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right].$$
(3)

 $\Rightarrow~\vec{\Omega}=0$ called frozen spin, because momentum and spin stay aligned.

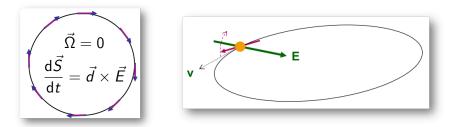
• In the absence of magnetic fields $(B_{\perp}=ec{B}_{\parallel}=0)$,

$$\vec{\Omega} = 0, \text{ if } \left(G\gamma - \frac{\gamma}{\gamma^2 - 1} \right) = 0.$$
 (4)

Possible only for particles with G > 0, such as proton (G = 1.793) or electron (G = 0.001).

For protons, (4) leads to magic momentum:

$$G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{p^2} \quad \Rightarrow \quad \boxed{p = \frac{m}{\sqrt{G}} = 700.740 \,\mathrm{MeV \, c^{-1}}}$$
(5)


First direct hadron EDM measurement with deuterons using COSY

Frank Rathmann (f.rathmann@fz-juelich.de)

Protons at magic momentum in pure electric ring:

Recipe to measure EDM of proton:

- 1. Place polarized particles in a storage ring.
- 2. Align spin along direction of flight at magic momentum.
 - \Rightarrow freeze horizontal spin precession.
- 3. Search for time development of vertical polarization.

New method to measure EDMs of charged particles:

- Magic rings with spin frozen along momentum of particle.
- Polarization buildup $P_y(t) \propto d$.

First direct hadron EDM measurement with deuterons using COSY

Experimental requirements for storage ring EDM searches

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: $N = 4 \times 10^{10}$ particles per fill.
- High polarization of stored polarized hadrons: P = 0.8.
- Large electric fields: E = 10 MV/m.
- Long spin coherence time: $\tau_{SCT} = 1000 \, s.$
- Efficient polarimetry with
 - large analyzing power: $A_y \simeq 0.6$,
 - and high efficiency detection $f \simeq 0.005$.

In terms of numbers given above:

• This implies:

$$\sigma_{\rm stat} = \frac{1}{\sqrt{N f} \, \tau_{\rm SCT} \, P \, A_y \, E}$$

$$\sigma_{
m stat}(1\,{
m yr})=10^{-29}\,{
m e\,cm}$$
 .

 \bullet Experimentalist's goal is to provide $\sigma_{\rm syst}$ to the same level.

 \Rightarrow

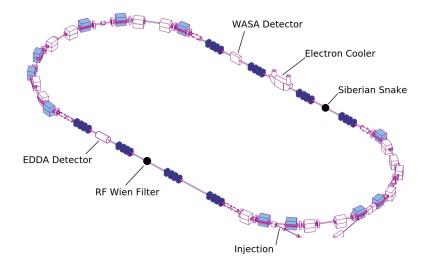
Progress toward storage ring EDM experiments

Complementing the spin physics tool box

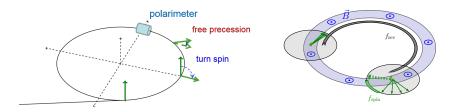
COoler SYnchrotron COSY

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta $p = 0.3 3.7 \, \text{GeV/c.}$
- Phase-space cooled internal and extracted beams.

COSY formerly used as spin-physics machine for hadron physics:

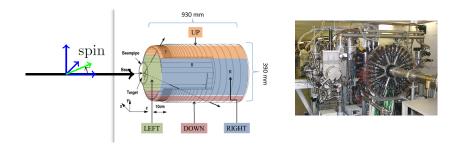

- Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurment of deuteron EDM.

First direct hadron EDM measurement with deuterons using COSY


Frank Rathmann (f.rathmann@fz-juelich.de)

12/64

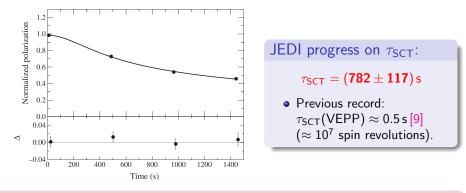
COSY Landscape


Principle of spin-coherence time measurement

Measurement procedure:

- 1. Vertically polarized deuterons stored at $p \simeq 1 \,\text{GeV}\,\text{c}^{-1}$.
- 2. Polarization flipped into horizontal plane with RF solenoid (\approx 200 ms).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from U D asymmetry.

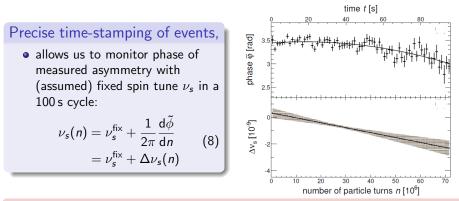
Detector system: EDDA [8]


EDDA used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- Deuterons at $p=1\,{
 m GeV\,c^{-1}},\,\gamma=1.13,$ and $u_s=\gamma\,{
 m G}\simeq-0.161$
- Spin-dependent differential cross section on unpolarized target:

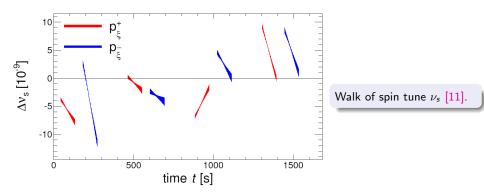
$$N_{\rm U,D} \propto 1 \pm \frac{3}{2} p_x A_y \sin(\underbrace{\nu_s \cdot f_{\rm rev}}_{f_s = -120.7 \, \rm kHz} \cdot t), \text{ where } f_{\rm rev} = 750.0 \, \rm kHz.$$
(7)

Optimizations of spin-coherence time [10]


Precise adjustments of three sextupole families in the ring

Spring 2015: Way beyond anybody's expectation:

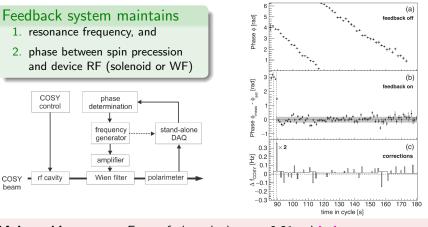
- With about 10⁹ stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- Large value of $au_{
 m SCT}$ of crucial importance (6), since $\sigma_{
 m stat} \propto { au_{
 m SCT}}^{-1}$.


Precision determination of the spin tune [11]

Experimental technique allows for:

- Spin tune ν_s determined to $\approx 10^{-8}$ in 2s time interval.
- In a 100s cycle at $t \approx 38$ s, interpolated spin tune amounts to $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11}$, *i.e.*, $\Delta \nu_s / \nu_s \approx 10^{-10}$.
- \bullet \Rightarrow new precision tool to study systematic effects in a storage ring.

Spin tune as a precision tool for accelerator physics


Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (→ phase-lock).
- Studies of machine imperfections.

Phase locking spin precession in machine to device RF

At COSY, one cannot freeze the spin precession

 $\Rightarrow\,$ To achieve precision for EDM, phase-locking is next best thing to do.

Major achievement : Error of phase-lock $\sigma_{\phi} = 0.21$ rad [12].

First direct hadron EDM measurement with deuterons using COSY

Frank Rathmann (f.rathmann@fz-juelich.de)

First direct deuteron EDM measurement using COSY *Precursor experiment*

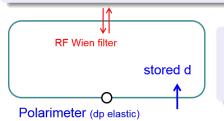
Highest EDM sensitivity shall be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - E field couples to EDM and provides required sensitivity ($< 10^{-28}$ e cm).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea of proof-of-principle experiment with RF Wien filter $(\vec{E} \times \vec{B})$:

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle (\sim 1000 s).

Goal of proof-of-principle experiment:

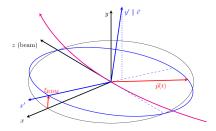

Show that conventional storage ring useable for first direct EDM measurement

RF Wien filter method

More aspects about the technique:

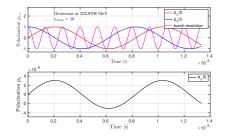
• RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:

- Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0$ (JEDI paper on collective oscillations near quantum limit [13, 14]).
- EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.


• Deuteron spins lie in machine plane.

• If $d \neq 0 \Rightarrow$ accumulation of vertical polarization P_y , during spin coherence time $\tau_{SCT} \sim 1000 \text{ s.}$

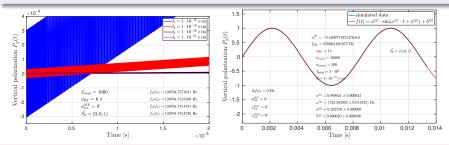
Statistical sensitivity:


- in the range 10^{-23} to 10^{-24} e cm for d(deuteron) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter etc.

Effect of EDM on stable spin axis of the ring $_{\rm [15]}$ without RF WF

Beam particles move along z direction

- Presence of an EDM $\Rightarrow \xi_{\text{EDM}} > 0$.
- \Rightarrow Spins precess around the \vec{c} axis.
- $\Rightarrow \text{ Oscillating vertical polarization} \\ \text{component } p_y(t) \text{ is generated.}$

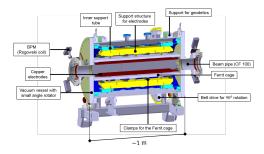

Evolution for 10 turns $[\vec{p}_0 = (0, 0, 1)]$

- $p_x(t)$, $p_z(t)$ and $p_y(t)$.
- Bunch revolution indicated as well.
- p_y oscillation amplitude corresponds to tilt angle ξ_{EDM} .

Model calculation of polarization buildup due to EDM $_{\rm [15]}$ with RF Wien filter

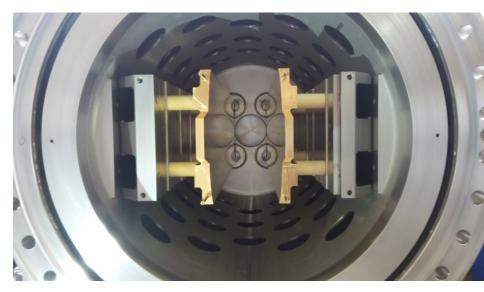
Ideal COSY ring with deuterons at $p_d = 970 \text{ MeV/c}$:

- G = -0.143, $\gamma = 1.126$, $\left| f_s = f_{\mathsf{rev}}(\gamma G + K_{(=0)}) \right| \approx 120.765 \, \mathsf{kHz}$
- Enhanced RF field integral $f_{ampl} \times \int E_{WF} \cdot d\ell \approx 2200 \, \text{kV}$ (w/o ferrites) [16].


Features of EDM induced vertical polarization buildup

- EDM accumulates in $p_y(t) \propto d_{\text{EDM}}$ [17–19].
- \rightarrow Full oscillation of vertical polarization $p_y(t)$ with proper feedback via pilot bunch.

Design of waveguide RF Wien filter


Joint Jülich – RWTH Aachen development:

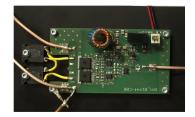
- Institute of High Frequency Technology, RWTH Aachen University:
- Waveguide provides $\vec{E} \times \vec{B}$ by design.
- Minimal \vec{F}_L by careful electromagnetic design of all components [16].

View along the beam axis in the RF Wien filter

Fast switches¹ for RF power of Wien filter

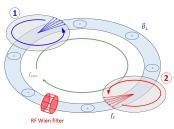
GaN HEMT-based solution (Gallium Nitride Transistors):

- Short switch on/off times (\approx few ns).
- High power capabilities (\approx few kV).
- On board power damping.


Installed switches:

- capable to handle up to 200 W each
- permits system to run near a total power of 0.8 kW in pulsed mode

¹developed together with Fa. barthel HF-Technik GmbH, Aachen


First direct hadron EDM measurement with deuterons using COSY

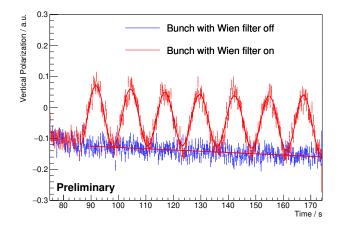
Frank Rathmann (f.rathmann@fz-juelich.de)

- symmetric switch on/off times (\approx few ns).
- -30 dB power damping.

Bunch-selective spin manipulation (co-magnetometry) | World-first (September 2020 JEDI, with *d* at 970 MeV/c)

- bunches (1) and (2) orbit at $f_{rev} \approx 750 \text{ kHz}$:
 - coherent ensembles in ring plane
 - precessing at $f_s \approx 120 \, \mathrm{kHz}$
- waveguide RF WF [16] with radial field \vec{B}_r
 - on resonance² at $f_{WF} = 871.430646 \text{ kHz}$
- Apply bunch-selective gating of RF Wien filter in 1:

▶ (2) oscillating $p_y(t)$, (1) not affected (pilot bunch \rightarrow co-magnetometer)


 $^{-1}f_{\mathrm{WF}}=\mathcal{K}\cdot f_{\mathsf{rev}}+f_{\mathsf{s}}=(\mathcal{K}+
u_{\mathsf{s}})f_{\mathsf{rev}}$, where $\mathcal{K}\in\mathbb{Z}$ and u_{s} is spin tune

First direct hadron EDM measurement with deuterons using COSY

Frank Rathmann (f.rathmann@fz-juelich.de)

Bunch-selective spin manipulation (co-magnetometry) II World-first (September 2020 JEDI, with d at 970 MeV/c)

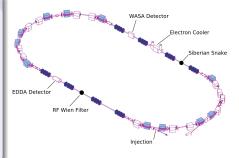
Preliminary results: to be submitted soon by JEDI

Analysis of pilot bunch run by Jamal Slim

First direct hadron EDM measurement with deuterons using COSY

Strength of EDM resonance

EDM induced polarization oscillation,

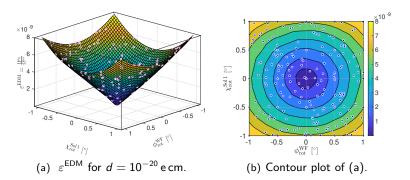

• can generally be described by

 $p_y(t) = a \sin(\Omega^{p_y} t + \phi_{\mathsf{RF}}),$

y perpendicular to ring plane.

• EDM resonance strength defined as ratio of angular frequency $\Omega^{p_{\gamma}}$ to orbital angular frequency Ω^{rev} ,

$$\varepsilon^{\mathsf{EDM}} = rac{\Omega^{p_y}}{\Omega^{\mathsf{rev}}}$$

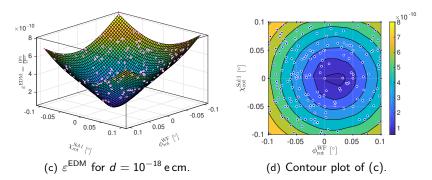


How is the EDM effect actually measured?

Two features are simultaneously applied in the ring:

- 1. the RF Wien filter is rotated by a small angle. This generates a tiny radial magnetic RF field, which affects the spin evolution.
- 2. In addition, a longitudinal magnetic field in the ring opposite to the Wien filter, about which the spins rotate as well.

Expectation: $d = 10^{-20} \text{ e cm}$ in ideal COSY ring [15]


Function describing the surface

• Surface described by *elliptic paraboloid* [15]:

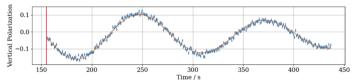
$$\left(\varepsilon^{\rm EDM}\right)^2 = \frac{\psi_{\rm WF}^2}{16\pi^2} \cdot \left[A\left(\phi^{\rm WF} - \phi_0^{\rm WF}\right)^2 + B\left(\frac{\chi^{\rm Sol}}{2\sin\pi\nu_{\rm s}^{(2)}} + \chi_0^{\rm Sol}\right)^2 + C\right]$$

A and B account for possible deviations of ε^{EDM} along ϕ^{WF} and χ^{Sol} .

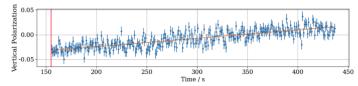
Expectation: $d = 10^{-18} \text{ e cm}$ in ideal COSY ring [15, PRAB '20]

Function describing the surface

• Surface described by elliptic paraboloid [15, PRAB '20]:


$$\left(\varepsilon^{\rm EDM}\right)^2 = \frac{\psi_{\rm WF}^2}{16\pi^2} \cdot \left[A \left(\phi^{\rm WF} - \phi_0^{\rm WF} \right)^2 + B \left(\frac{\chi^{\rm Sol}}{2\sin \pi \nu_s^{(2)}} + \chi_0^{\rm Sol} \right)^2 + C \right]$$

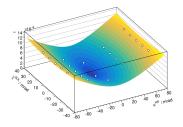
A and B account for possible deviations of ε^{EDM} along ϕ^{WF} and χ^{Sol} .


Preliminary results of precursor experiment I Wien filter mapping

Observation of $p_y(t)$ with two stored bunches: Signal and pilot bunch

• Signal bunch

Pilot bunch



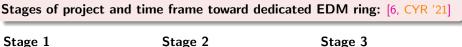
32/64

- Decoherence clearly visible in signal bunch.
- No oscillations in pilot bunch.
- Determine oscillation frequencies $\Omega^{p_y} \rightarrow \text{Wien filter map via } \varepsilon^{\text{EDM}} = \frac{\Omega^{p_y}}{\Omega^{rev}}$ First direct hadron EDM measurement with deuterons using COSY Frank Rathmann (f.rathmann@fz-juelich.de)

Preliminary results of precursor experiment II

Example map of resonance strength $\varepsilon^{\rm EDM}$

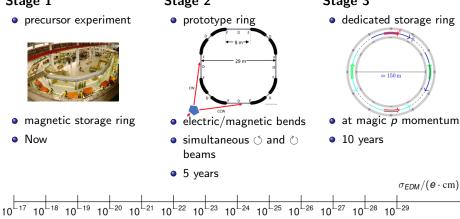
Determination of minimum via fit with surface function:


• $\phi_0^{WF}/mrad = -2.05 \pm 0.02$ and $\xi_0^{Sol}/mrad = 4.32 \pm 0.06$

Extraction of deuteron EDM:

- 1. Minimum determines spin rotation axis (3-vector) at RF WF including EDM.
- 2. Spin tracking in COSY lattice \rightarrow orientation of stable spin axis w/o EDM.
- 3. EDM is obtained from the difference of 1. and 2.

Strategy toward dedicated EDM ring


CPEDM Collaboration: http://pbc.web.cern.ch/edm/edm-default.htm

precursor experiment

- magnetic storage ring
- Now

Next step: Stage 2: Prototype EDM storage ring (PTR)

Build demonstrator for charged-particle EDM

- Project prepared by new CPEDM collaboration (CERN + JEDI + srEDM).
- Physics Beyond Collider process (CERN) & ESPP Update.

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

Challenges – open issues

- All electric & E/B combined bends
- Storage time
- CW-CCW operation with orbit difference to pm

- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Primary purpose of PTR

• Study open issues and perform first direct proton EDM measurement.

First direct hadron EDM measurement with deuterons using COSY

Search for charged hadron particle EDMs (p, d, light ions):

- New window to disentangle sources of *CP* violation, and to possibly explain matter-antimatter asymmetry of the Universe.
 - Search for static charged particle EDMs (p, d, ³He)
 - $\mathsf{EDMs} \to \mathsf{probes}$ of CP-violating interactions
 - Matter-antimatter asymmetry
 - Search for oscillating EDMs (\rightarrow see talk by Ed Stephenson)
 - Axion gluon coupling
 - Dark matter search
 - Potential sensitivity to gravitational effects [20].
- Results & achievements at COSY summarized in CYR [6].

Summary II

Present EDM measurement using RF Wien filter

- JEDI with steady progress in spin dynamics relevant to future EDM searches.
- COSY remains a unique facility for such studies.
 - Operation planned to cease end of 2024.
- First direct JEDI deuteron EDM measurement at COSY:
 - Two runs (6 wk '18 and 6 wk '21):
 - Many upgrades and improvements of COSY and RF Wien filter.
 - Data analysis and systematics studies in progress.
 - Anticipated deuteron EDM sensitivity 10^{-18} to 10^{-20} e cm.

Strong interest of high energy community in srEDM searches

- Protons and light nuclei as part of physics program of the post-LHC era:
 - Physics Beyond Collider process (CERN), and European Strategy for Update.
 - As part of this: CYR [6] \rightarrow EU Design Study for PTR:
 - Realistic strategy toward a dedicated EDM ring
 - Partners: INFN, GSI, CERN, MPG, RWTH, Liverpool, Krakow, Georgia
 - * CERN mandate to contribute to this effort.
 - Possible host sites: CERN or COSY.

References I

- C. L. Bennett et al. (WMAP), "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results," Astrophys. J. Suppl. 148, 1 (2003), astro-ph/0302207.
- [2] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia, and G. Steigman, "Effective number of neutrinos and baryon asymmetry from BBN and WMAP," Phys. Lett. B566, 8 (2003), hep-ph/0305075.
- [3] W. Bernreuther, "CP violation and baryogenesis," Lect. Notes Phys. 591, 237 (2002), hep-ph/0205279.
- [4] J. Bsaisou, J. de Vries, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi, A. Nogga, and A. Wirzba, "Nuclear electric dipole moments in chiral effective field theory," Journal of High Energy Physics 2015, 1 (2015), ISSN 1029-8479, URL http://dx.doi.org/10.1007/JHEP03(2015)104.
- [5] I. B. Khriplovich and S. K. Lamoreaux, CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules (Berlin, Germany: Springer (1997) 230 p, 1997).
- [6] F. Abusaif et al. (CPEDM), Storage Ring to Search for Electric Dipole Moments of Charged Particles – Feasibility Study (CERN, Geneva, 2021), 1912.07881.
- T. Fukuyama and A. J. Silenko, "Derivation of Generalized Thomas-Bargmann-Michel-Telegdi Equation for a Particle with Electric Dipole Moment," Int. J. Mod. Phys. A28, 1350147 (2013), URL https://www.worldscientific.com/doi/abs/10.1142/S0217751X13501479.

References II

- [8] D. Albers et al., "A Precision measurement of pp elastic scattering cross-sections at intermediate energies," Eur. Phys. J. A22, 125 (2004).
- [9] I. Vasserman, P. Vorobyov, E. Gluskin, P. Ivanov, I. Koop, G. Kezerashvili, A. Lysenko, I. Nesterenko, E. Perevedentsev, A. Mikhailichenko, et al., "Comparison of the electron and positron anomalous magnetic moments: Experiment 1987," Physics Letters B 198, 302 (1987), ISSN 0370-2693, URL http://www.sciencedirect.com/science/article/pii/0370269387915152.
- [10] G. Guidoboni, E. Stephenson, S. Andrianov, W. Augustyniak, Z. Bagdasarian, M. Bai, M. Baylac, W. Bernreuther, S. Bertelli, M. Berz, et al. (JEDI), "How to reach a thousand-second in-plane polarization lifetime with 0.97 gev/c deuterons in a storage ring," Phys. Rev. Lett. **117**, 054801 (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.117.054801.
- [11] D. Eversmann, V. Hejny, F. Hinder, A. Kacharava, J. Pretz, F. Rathmann, M. Rosenthal, F. Trinkel, S. Andrianov, W. Augustyniak, et al. (JEDI), "New method for a continuous determination of the spin tune in storage rings and implications for precision experiments," Phys. Rev. Lett. **115**, 094801 (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.115.094801.
- [12] N. Hempelmann, V. Hejny, J. Pretz, E. Stephenson, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, et al. (JEDI), "Phase locking the spin precession in a storage ring," Phys. Rev. Lett. **119**, 014801 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.014801.

References III

- [13] J. Slim, N. N. Nikolaev, F. Rathmann, A. Wirzba, A. Nass, V. Hejny, J. Pretz, H. Soltner, F. Abusaif, A. Aggarwal, et al. (JEDI), "First detection of collective oscillations of a stored deuteron beam with an amplitude close to the quantum limit," Phys. Rev. Accel. Beams 24, 124601 (2021), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.124601.
- [14] J. Slim, N. N. Nikolaev, F. Rathmann, and A. Wirzba, "Quantum mechanics of radiofrequency-driven coherent beam oscillations in storage rings," (2021), 2111.08444.
- [15] F. Rathmann, N. N. Nikolaev, and J. Slim, "Spin dynamics investigations for the electric dipole moment experiment," Phys. Rev. Accel. Beams 23, 024601 (2020), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.024601.
- [16] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach, B. Lorentz, S. Mey, A. Nass, F. Rathmann, et al., "Electromagnetic simulation and design of a novel waveguide rf wien filter for electric dipole moment measurements of protons and deuterons," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828, 116 (2016), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S0168900216303710.
- [17] A. Saleev, N. N. Nikolaev, F. Rathmann, W. Augustyniak, Z. Bagdasarian, M. Bai, L. Barion, M. Berz, S. Chekmenev, G. Ciullo, et al. (JEDI), "Spin tune mapping as a novel tool to probe the spin dynamics in storage rings," Phys. Rev. Accel. Beams 20, 072801 (2017), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.072801.

References IV

- [18] F. Rathmann, A. Saleev, and N. N. Nikolaev, "The search for electric dipole moments of light ions in storage rings," J. Phys. Conf. Ser. 447, 012011 (2013).
- [19] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, "Resonance method of electric-dipole-moment measurements in storage rings," Phys. Rev. Lett. 96, 214802 (2006), URL http://link.aps.org/doi/10.1103/PhysRevLett.96.214802.
- [20] see, e.g., the presentations at the ARIES WP6 Workshop: Storage Rings and Gravitational Waves "SRGW2021", 2 February - 11 March 2021, available from https://indico.cern.ch/event/982987.
- [21] J. Slim, A. Nass, F. Rathmann, H. Soltner, G. Tagliente, and D. Heberling, "The driving circuit of the waveguide RF Wien filter for the deuteron EDM precursor experiment at COSY," JINST 15, P03021 (2020), URL https://iopscience.iop.org/article/10.1088/1748-0221/15/03/P03021/pdf.
- [22] B. Alberdi Esuain, Master's thesis, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University (2019), optimization of Injection in COSY, URL http://collaborations.fz-juelich.de/ikp/jedi/public_files/theses/main.pdf.
- [23] T. Wagner, A. Nass, J. Pretz, F. Abusaif, A. Aggarwal, A. Andres, I. Bekman, N. Canale, I. Ciepal, G. Ciullo, et al., "Beam-based alignment at the cooler synchrotron COSY as a prerequisite for an electric dipole moment measurement," Journal of Instrumentation 16, T02001 (2021), URL https://doi.org/10.1088/1748-0221/16/02/t02001.

41/64

References V

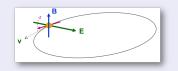
- [24] I. Keshelashvili, F. Müller, D. Mchedlishvili, and D. Shergelashvili (JEDI), "A new approach: LYSO based polarimetry for the EDM measurements," J. Phys. Conf. Ser. 1162, 012029 (2019).
- [25] D. Shergelashvili, D. Mchedlishvili, F. Müller, and I. Keshelashvili (Jedi), "Development of LYSO detector modules for a charge-particle EDM polarimeter," PoS SPIN2018, 145 (2019).
- [26] F. Abusaif (JEDI), "Development of compact highly sensitive beam position monitors for storage rings," Hyperfine Interactions 240, 4 (2019), URL https://link.springer.com/article/10.1007/s10751-018-1543-x.
- [27] C. Weidemann, F. Rathmann, H. J. Stein, B. Lorentz, Z. Bagdasarian, L. Barion, S. Barsov, U. Bechstedt, S. Bertelli, D. Chiladze, et al., "Toward polarized antiprotons: Machine development for spin-filtering experiments," Phys. Rev. ST Accel. Beams 18, 020101 (2015), URL http://link.aps.org/doi/10.1103/PhysRevSTAB.18.020101.
- [28] N. Brantjes, V. Dzordzhadze, R. Gebel, F. Gonnella, F. Gray, D. van der Hoek, A. Imig, W. Kruithof, D. Lazarus, A. Lehrach, et al., "Correcting systematic errors in high-sensitivity deuteron polarization measurements," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664, 49 (2012), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/S016890021101850X.
- [29] F. Müller et al., "A New Beam Polarimeter at COSY to Search for Electric Dipole Moments of Charged Particles," JINST 15, P12005 (2020), 2010.13536.

References VI

[30] M. leiri, H. Sakaguchi, M. Nakamura, H. Sakamoto, H. Ogawa, M. Yosol, T. Ichihara, N. Isshiki, Y. Takeuchi, H. Togawa, et al., "A multifoil carbon polarimeter for protons between 20 and 84 mev," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 257, 253 (1987), ISSN 0168-9002, URL https://www.acienaedianet.acm/acienae/acticle/acie/010000027007442

https://www.sciencedirect.com/science/article/pii/0168900287907443.

- [31] F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study," (2019), https://e-publishing.cern.ch/index.php/CYRM/issue/view/132.
- [32] P. W. Graham and S. Rajendran, "Axion dark matter detection with cold molecules," Phys. Rev. D 84, 055013 (2011), URL https://link.aps.org/doi/10.1103/PhysRevD.84.055013.
- [33] S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park, and Y. K. Semertzidis, "Axion dark matter search using the storage ring EDM method," PoS PSTP2017, 036 (2018), 1710.05271.


Spare Slides

Search for charged particle EDMs with frozen spins Magic storage rings

For any sign of G, in *combined* electric and magnetic machine:

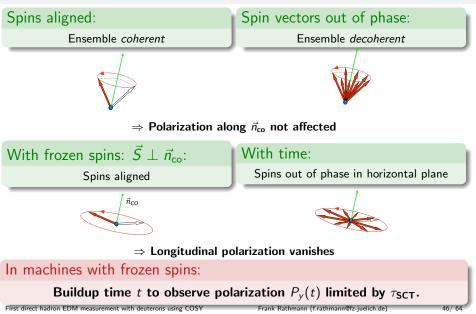
• Generalized solution for magic momentum

$$\frac{E_x}{B_y} = \frac{Gc\beta\gamma^2}{1 - G\beta^2\gamma^2},\tag{9}$$

where E_x is radial, and B_y vertical field.

• Some configurations for circular machine with fixed radius r = 25 m:

particle	G	$p [{ m MeV}{ m c}^{-1}]$	T [MeV]	E_x [MV m ⁻¹]	$B_{y}[T]$
proton	1.793	700.740	232.792	16.772	0.000
deuteron	-0.143	1000.000	249.928	-4.032	0.162
helion	-4.184	1200.000	245.633	14.654	-0.044

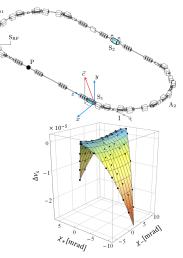

Offers possibility to determine EDMs of

protons, deuterons, and helions in one and the same machine.

First direct hadron EDM measurement with deuterons using COSY

Spin coherence time

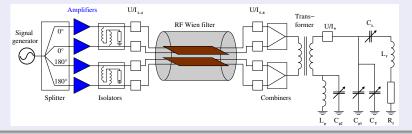
Most polarization experiments don't care about coherence of spins along \vec{n}_{co}


Study of machine imperfections

JEDI developed new method to investigate magnetic machine imperfections based on highly accurate determination of spin-tune [17, PRAB '17].

Spin tune mapping

- Two cooler solenoids act as spin rotators ⇒ generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.


- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level $\Delta c = 2.8 \times 10^{-6}$ rad.
- Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20}\,{\rm e\,cm}.$

Driving circuit [21]

Realization with load resistor and tunable elements (L's and C's):

• Design layout using four separate 1 kW power amplifiers.

Circuit fully operational

- Tuneable elements^a allow [16]:
 - minimization of Lorentz-force, and
 - velocity matching to β of the beam.
- Power upgrade to $4 \times 2 \text{ kW}$: $\int B_z dz = 0.218 \text{ T mm possible}$.

^abuilt by Fa. Barthel, http://www.barthel-hf.de.

RF Wien filter Installation at COSY

• RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25Ω resistor.

Two runs for deuteron precursor EDM measurement

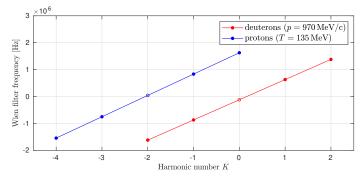
1. Nov-Dec 2018: feedback during 1^{st} quarter of oscillation period p_y

2. **Feb-Mar 2021:** feedback via pilot bunch \rightarrow observation of many oscillations. Improvements between runs:

• COSY:

- 1. Better understanding of injection process into COSY [22]
- 2. Alignment campaigns of COSY magnet system
- 3. Beam-based alignment [23]
- 4. Improvements of COSY signals and distribution
- 5. New tools for fast tune and chromaticity measurements; EPICS archiving
- 6. New JEDI Polarimeter [24, 25]

• RF WF


- 1. 8-channel Zurich Instruments signal generator to feed signals homogeneously
- 2. Improved matching of RF Wien filter
 - $\star\,$ beam oscillations $\approx 1\,\mu m$ at BPM opposite WF [13, PRAB '21]).
- 3. Optimization of Rogowski BPM system [26]
- 4. Upgrade of slow-control system
- 5. Implementation of fast RF switches

Frequencies of RF Wien filter [15]

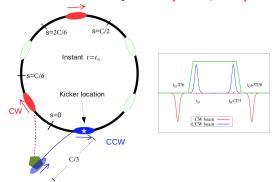
Spin resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}} \left(\gamma \mathcal{G} \pm \mathcal{K}
ight) \,, k \in \mathbb{Z}.$$

- RF Wien filter operates at frequencies between 0 to 2 MHz,
- Open symbols not reachable with present setup of driving circuit, i.e.,
 - deuterons at K = 0 (-120.8 kHz), and
 - protons at K = -2 (39.4 kHz).

PTR lattice design (protons)

Basic beam parameters and layout [6, chap. 7]

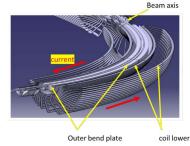

F D F		E only		k B	unit
← 8 m→	Bending radius	8.86	frozen spin 8.86		m
	Kinetic energy	30	30	45	MeV
29 m	$\beta = v/c$	0.247	0.247	0.299	
p p	γ (kinetic)	1.032	1.032	1.048	
F F	Momentum	239	239	294	MeV/c
	Electric field E	6.67	4.56	7.00	MV/m
cw	Magnetic field B		0.0285	0.0327	Ť
	rms $\epsilon_x = \epsilon_y$	1	1		π mm mrad
Cruste hard fortee	Transv. acc. $a_x = a_y$	> 10	>	10	π mm mrad
ccw					

• p at 30 MeV all-electric CW-CCW beams operation

• p at 30 to 45 MeV frozen spin, with additional vertical B field

Beam transfer and injection system

S. Martin, R. Talman, C. Carli, M. Haj Tahar: [6, chap. 7.8]

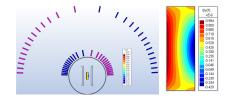

Test at COSY: spin manipulation after injection appears feasible:

- could simplify injection scheme, no need for fast switches
- orient spin directions in bunches after injection of DC beam

Electrostatic deflector

with additional magnetic bend

• Concept for electrostatic deflector element available [6, chap. 7.6].

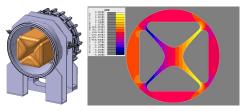


		units
Electric		
electric field	7.00	MV/m
gap between plates	60	mm
plate height (straight part)	151.5	mm
plate length	6.959	m
total bending length	55.673	m
total straight length	44.800	m
bend angle per unit	45	deg

- Next step: build prototype with RWTH-Aachen (IAEW High Voltage)
- Studies of straight E/B deflector element to improve voltage holding capability ongoing at Jülich.

Magnetic bends

- Concept for magnetic add-on to deflector available [6, chap. 7.6].
- Magnetic system $(\cos \theta)$ placed outside the vacuum tube.


Magnetic		
magnetic field	0.0327	Т
current density	5.000	A/mm ²
windings/element	60	

• Magnet system included in prototype development with RWTH-Aachen (IAEW High Voltage)

Multipole elements

Quadrupoles

- Design of electrostatic elements by J. Borburgh (CERN) [6, chap. 9])
- Electrostatic quadrupoles
 - aperture diameter 80 mm, applied $\pm 20 \text{ kV}$.
 - Simulated design with vacuum chamber of 400 mm diameter.

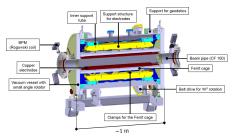
- PTR quadrupoles max. pole tip potential 30 kV (margin for conditioning)
- 3D design available:
 - sextupole, octupole and higher harmonics reasonable

Needs strong support

Vacuum system

• Ring vacuum given by minimum required beam lifetime of about 1000 s.

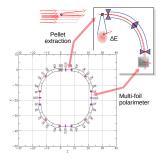
- ► N₂ partial pressures below 10⁻¹² mbar
- H₂ partial pressures below 5×10^{-11} mbar.
- Stochastic cooling rate better than $5\times 10^{-3}\,\text{mm\,mrad/s}.$
- non-vibrational system that avoids generation of magnetic fields
 - Cryogenic or NEG pumping systems may be used:
 - 1. NEG material becomes saturated after several pump-downs.
 - 2. Aging NEG material leaves dust particles in vacuum vessel.
 - 3. PTR will have significant number of pump-downs during program.
 - 4. High-voltage system requires excellent vacuum.
 - 5. System based on NEG cartouches [27] under discussion.
- Mechanical alignment of elements inside vacuum pipe of 400 mm diameter
 - active compensation of oscillations/ground motion
- Shielding (passive versus active)


- Control proton beam emittance during measurements: 30 MeV to 45 MeV.
- $\bullet\,$ Cooling should compensate emittance growth of 5 $\times\,10^{-3}\,\text{mm\,mrad/s}.$
 - Used successfully at COSY to compensate emittance growth of beam during interaction with internal gas targets.
 - Interplay between stochastic cooling and evolution of horizontally polarized ensemble of particles unknown.
 - Studies of emittance growth and spin coherence time not possible at any other ring prior to PTR.
- Aim: provide basic design of stochastic cooling system for PTR.

- Azimuthal magnetic fields of RF cavities lead to spin rotations of the magnetic moment.
- Even in case of a perfectly aligned cavity, individual particles experience horizontal magnetic fields and spin rotations into vertical and horizontal directions.
- Effect on EDM measurement strongly suppressed:
 - cancellation of effect for different particles crossing cavity gap each turn with different betatron phases and transverse positions.
- Design of RF cavity required that minimizes unwanted spin rotations.

Spin manipulation tools

- Vertical polarisation of stored beam rotated into horizontal plane by **longitudinal field** of **RF solenoid**.
 - \blacktriangleright Typical ramp-up times from vertical to horizontal polarisation are $\approx 200\,ms.$
 - optimize design for PTR.



- **RF Wien filter** [16] applies **transverse magnetic fields** to spin, while excerting minimal Lorentz force on beam:
 - COSY: spin manipulation of individual bunches by fast RF switches feasible.
 - optimize design for PTR, need two of them for CW-CCW operations.

High-precision beam polarimeter (... with pellet extraction)

- dC (pC) scattering using white noise extraction works for relative polarization errors $\Delta p/p = 10^{-6}$ [28].
- Polarimeter system for dedicated ring described in [24, 25, 29].
- Polarization profile determination at low energies:
 - Carbon multifoil polarimeter [30] based on Silicon detectors with pellet extraction
 - * (PhD J. Gooding, University of Liverpool).
 - Ballistic Si pellet target for homogeneous beam sampling [31, App. K].
 - ► Eloss of 100 keV in 50 μ m pellet \rightarrow track displaced by 2.5 cm behind 90° bend.

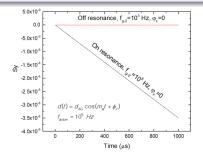
Beam diagnostics

Beam Position Monitors

Development of prototype BPM based on segmented toroidal coil [26]

Rogowski coil

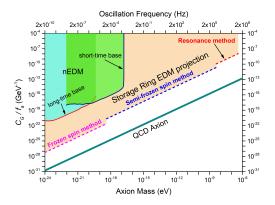
- advantages over conventional split-cylinder BPMs
 - short insertion length \rightarrow many BPMs can be installed
 - inexpensive
- high sensitivity to position of bunched beams
 Other diagnostics needed:
- - Beam profile monitor, non-destructive for emittance measurement
 - BCT, also to adjust CW/CCW beam currents

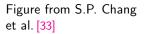

(Oscillating) Axion-EDM search using storage ring

Motivation: Paper by Graham and Rajendran [32, 2011]

 Oscillating axion field is coupled with gluons and induces an oscillating EDM in hadronic particles.

Measurement principle:


- When oscillating EDM resonates with particle g 2 precession frequency in the storage ring, the EDM precession can be accumulated.
- Due to strong effective electric field (from $\vec{v} \times \vec{B}$), sensitivity improved significantly.



Courtesy of Seongtae Park (IBS, Daejeon, ROK)

First direct hadron EDM measurement with deuterons using COSY

Limits for axion-gluon coupled to oscillating EDM

Realization

- No new/additional equipment required!
- First test experiment carried out in I/2019 in magnetic storage ring COSY.
- Data analysis well in progress.