

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (on behalf of the JEDI collaboration)

Physikalisches Institut Universität Bonn, 22.03.2019

Frank Rathmann (f.rathmann@fz-juelich.de)

Electric Dipole Moment Searches using Storage Rings

Contents

Introduction

Progress toward storage ring EDM experiments

- Spin tune determination
- Spin coherence time
- Phase locking
- Study of machine imperfections
- From JEDI to CPEDM: a prototype EDM storage ring

Proof of principle EDM experiment using COSY

- Model calculation
- Technical realization of RF Wien filter
- Measurements of EDM-induced polarization buildup

4 Summary

Baryon asymmetry in the Universe

Carina Nebula: Largest-seen star-birth regions in the galaxy

Observation and expectation from Standard Cosmological Model (SCM):

	$\eta = (\textit{n}_b - \textit{n}_{ar{b}})/\textit{n}_{\gamma}$	
Observation	$\left(6.11^{+0.3}_{-0.2} ight) imes10^{-10}$	Best Fit Cosmological Model [1]
	$(5.53-6.76) imes 10^{-10}$	WMAP [2]
Expectation from SCM	$\sim 10^{-18}$	Bernreuther (2002) [3]

Precision frontier

EDMs possibly constitute missing cornerstone to explain surplus of matter over antimatter in the Universe:

- SCM gets it wrong by about 9 orders of magnitude.
- Non-vanishing EDMs would add fourth quantum number to fundamental particles

Large worldwide effort to search for EDMs of fundamental particles:

- hadrons, leptons, solids, atoms and molecules.
- \sim 500 researchers (estimate by Harris, Kirch).

Why search for charged particle EDMs using a storage ring?

Up to now, no direct measurement of charged hadron EDMs are available:

- Charged hadron EDM experiments provide potentially higher sensitivity than for neutrons:
 - longer lifetime,
 - more stored polarized protons/deuterons available than neutrons, and
 - one can apply larger electric fields in storage ring.
- Approach complimentary to neutron EDM searches.
- EDM of single particle not sufficient to identify CP violating source [4]

Naive estimate of scale of nucleon EDM

From Khriplovich & Lamoreux [5]:

• *CP* and *P* conserving magnetic moment \approx nuclear magneton μ_N .

$$u_N = rac{e}{2m_p} \sim 10^{-14}\,{
m e\,cm}.$$

- A non-zero EDM requires:
 - *P* violation: price to pay is $pprox 10^{-7}$, and
 - *CP* violation (from *K* decays): price to pay is $\sim 10^{-3}$.
- In summary:

$$|d_{N}| \sim 10^{-7} imes 10^{-3} imes \mu_{N} \sim 10^{-24}\,\mathrm{e\,cm}$$

• In Standard model (without θ_{QCD} term):

 $|d_{N}| \sim 10^{-7} imes 10^{-24} \, {
m e\, cm} \sim 10^{-31} \, {
m e\, cm}$

Region to search for BSM physics ($\theta_{QCD} = 0$) from nucleon EDMs:

$$10^{-24} \,\mathrm{e\,cm} > |d_N| > 10^{-31} \,\mathrm{e\,cm}.$$

Status of EDM searches I

EDM limits in units of [ecm]:

- Long-term goals for neutron, $^{199}_{80}\mathrm{Hg},\,^{129}_{54}\mathrm{Xe},$ proton, and deuteron.
- Neutron equivalent values indicate value for neutron EDM d_n to provide same physics reach as indicated system:

Particle	Current limit	Goal	d _n equivalent	date [ref]
Electron	$< 8.7 imes 10^{-29}$	$pprox 10^{-29}$		2014 [6]
Muon	$< 1.8 imes 10^{-19}$			2009 [7]
Tau	$< 1 imes 10^{-17}$			2003 [8]
Lambda	$< 3 imes 10^{-17}$			1981 [9]
Neutron	$(-0.21 \pm 1.82) imes 10^{-26}$	$pprox 10^{-28}$	10 ⁻²⁸	2015 [10]
¹⁹⁹ ₈₀ Hg	$< 7.4 imes 10^{-30}$	10 ⁻³⁰	$< 1.6 imes 10^{-26}$ [11]	2016 [12]
$^{129}_{54}{ m Xe}$	$< 6.0 imes 10^{-27}$	$pprox 10^{-30}$ to 10^{-33}	$pprox 10^{-26}$ to 10^{-29}	2001 [13]
Proton	$< 2 imes 10^{-25}$	$pprox 10^{-29}$	10 ⁻²⁹	2016 [12]
Deuteron	not available yet	$pprox 10^{-29}$	pprox 3 $ imes$ 10 ⁻²⁹ to 5 $ imes$ 10 ⁻³¹	

Status of EDM searches II

Missing are *direct* EDM measurements:

- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from $^{199}_{80}$ Hg.
- No measurement at all of deuteron EDM.

Experimental requirements for storage ring EDM searches

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity, and shielding from perturbing magnetic fields.
- High beam intensity: $N = 4 \times 10^{10}$ particles per fill.
- High polarization of stored polarized hadrons: P = 0.8.
- Large electric fields: E = 10 MV/m.
- Long spin coherence time: $\tau_{SCT} = 1000 \text{ s.}$
- Efficient polarimetry with
 - large analyzing power: $A_y \simeq 0.6$,
 - and high efficiency detection $f \simeq 0.005$.

In terms of numbers given above:

• This implies:

$$\sigma_{\rm stat} = \frac{1}{\sqrt{N f} \, \tau_{\rm SCT} \, P \, A_v \, E}$$

$$\Rightarrow \quad \sigma_{\mathsf{stat}}(1\,\mathsf{yr}) = 10^{-29}\,\mathsf{e\,cm}$$

• Experimentalist's goal is to provide σ_{syst} to the same level.

Particles with magnetic and electric dipole moment

For particles with EDM $ec{d}$ and MDM $ec{\mu}$ ($\propto ec{s}$),

• non-relativistic Hamiltonian:

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}.$$

• Energy of magnetic dipole invariant under P and T:

$$-\vec{\mu}\cdot\vec{B}\stackrel{P \text{ or }T}{\longrightarrow}-\vec{\mu}\cdot\vec{B},\qquad(2)$$

No other direction than spin $\Rightarrow \vec{d}$ parallel to $\vec{\mu}$ (\vec{s}).

• Energy of electric dipole $H = -\vec{d} \cdot E$, includes term

$$\vec{s} \cdot \vec{E} \xrightarrow{\rho \text{ or } I} -\vec{s} \cdot \vec{E},$$
 (3)

• Thus, EDMs violate both P and T symmetry.

In rest frame of particle,

• equation of motion for spin vector \vec{S} :

$$\frac{\mathrm{d}\vec{S}}{\mathrm{d}t} = \vec{\Omega} \times \vec{S} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}. \tag{4}$$

Frozen-spin

Spin precession frequency of particle *relative* to direction of flight:

$$\vec{\Omega} = \vec{\Omega}_{\text{MDM}} - \vec{\Omega}_{\text{cyc}} = -\frac{q}{\gamma m} \left[G \gamma \vec{B}_{\perp} + (1+G) \vec{B}_{\parallel} - \left(G \gamma - \frac{\gamma}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right].$$
(5)

- $\Rightarrow \vec{\Omega} = 0$ called frozen spin, because momentum and spin stay aligned.
 - In the absence of magnetic fields $(B_{\perp}=ec{B}_{\parallel}=0)$,

$$\vec{\Omega} = 0, \text{ if } \left(G\gamma - rac{\gamma}{\gamma^2 - 1}
ight) = 0.$$
 (6)

• Possible only for particles with G > 0, such as proton (G = 1.793) or electron (G = 0.001).

For protons, (6) leads to *magic momentum*:

$$G - \frac{1}{\gamma^2 - 1} = 0 \Leftrightarrow G = \frac{m^2}{p^2} \quad \Rightarrow \quad \left[p = \frac{m}{\sqrt{G}} = 700.740 \,\mathrm{MeV \, c^{-1}} \right]$$
(7)

Protons at magic momentum in pure electric ring:

Recipe to measure EDM of proton:

- 1. Place polarized particles in a storage ring.
- 2. Align spin along direction of flight at magic momentum.
 - \Rightarrow freeze horizontal spin precession.
- 3. Search for time development of vertical polarization.

New method to measure EDMs of charged particles:

- Magic rings with spin frozen along momentum of particle.
- Polarization buildup $P_y(t) \propto d$.

Electric Dipole Moment Searches using Storage Rings

Search for charged particle EDMs with frozen spins Magic storage rings

For any sign of G, in *combined* electric and magnetic machine:

• Generalized solution for magic momentum

$$rac{E_x}{B_y} = rac{Gceta\gamma^2}{1-Geta^2\gamma^2},$$

where E_x is radial, and B_y vertical field.

• Some configurations for circular machine with fixed radius r = 25 m:

particle	G	$p[{ m MeVc^{-1}}]$	T [MeV]	E_x [MV m ⁻¹]	$B_{y}\left[T ight]$
proton	1.793	700.740	232.792	16.772	0.000
deuteron	-0.143	1000.000	249.928	-4.032	0.162
helion	-4.184	1200.000	245.633	14.654	-0.044

(8)

Offers possibility to determine

EDMs of protons, deuterons, and helions in one and the same machine.

Progress toward storage ring EDM experiments

Progress toward storage ring EDM experiments Complementing the spin physics tool box

COoler SYnchrotron COSY

- Cooler and storage ring for (polarized) protons and deuterons.
- Momenta $p = 0.3 3.7 \, \text{GeV/c}$.
- Phase-space cooled internal and extracted beams.

COSY formerly used as spin-physics machine for hadron physics:

- Provides an ideal starting point for srEDM related R&D.
- Will be used for a first direct measurment of deuteron EDM.

COSY Landscape

Progress toward storage ring EDM experiments

Principle of spin-coherence time measurement

Measurement procedure:

- 1. Vertically polarized deuterons stored at $p \simeq 1 \,\text{GeV}\,\text{c}^{-1}$.
- 2. Polarization flipped into horizontal plane with RF solenoid (\approx 200 ms).
- 3. Beam extracted on Carbon target with ramped bump or by heating.
- 4. Horizontal (in-plane) polarization determined from U D asymmetry.

Progress toward storage ring EDM experiments

Detector system: EDDA [14]

EDDA previously used to determine $\vec{p}\vec{p}$ elastic polarization observables:

- Deuterons at $p = 1 \, {
 m GeV} \, {
 m c}^{-1}$, $\gamma = 1.13$, and $u_s = \gamma \, G \simeq -0.161$
- Spin-dependent differential cross section on unpolarized target:

$$V_{U,D} \propto 1 \pm \frac{3}{2} p_z A_y \sin(\underbrace{\nu_s f_{rev}}_{f_s} t), \text{ where } f_{rev} = 750 \text{ kHz.}$$
 (9)

Precision determination of the spin tune [15, PRL 2015]

Experimental technique allows for:

- Spin tune ν_s determined to $\approx 10^{-8}$ in 2s time interval.
- In a 100 s cycle at $t \approx 38$ s, interpolated spin tune amounts to $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11}$, *i.e.*, $\Delta \nu_s / \nu_s \approx 10^{-10}$.
- $\bullet \Rightarrow$ new precision tool to study systematic effects in a storage ring.

Spin tune as a precision tool for accelerator physics

Applications of new technique:

- Study long term stability of an accelerator.
- Feedback system to stabilize phase of spin precession relative to phase of RF devices (so-called **phase-lock**).
- Studies of machine imperfections.

Optimizations of spin-coherence time: [17, PRL 2016]

Spring 2015: Way beyond anybody's expectation:

- With about 10⁹ stored deuterons.
- Long spin coherence time was one of main obstacles of srEDM experiments.
- Large value of τ_{SCT} of crucial importance (1), since $\sigma_{\text{stat}} \propto \tau_{\text{SCT}}^{-1}$.

Phase locking spin precession in machine to device RF PhD work of Nils Hempelmann

At COSY, one cannot freeze the spin precession

 \Rightarrow To achieve precision for EDM, phase-locking is next best thing to do.

Major achievement : Error of phase-lock $\sigma_{\phi} = 0.21$ rad [18, PRL 2017].

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (f.rathmann@fz-juelich.de)

Study of machine imperfections PhD work of Artem Saleev

JEDI developed new method to investigate magnetic machine imperfections based on highly accurate determination of spin-tune [19, PRAB 2017].

Spin tune mapping

- Two cooler solenoids act as spin rotators ⇒ generate artificial imperfection fields.
- Measure spin tune shift vs spin kicks.

- Position of saddle point determines tilt of stable spin axis by magnetic imperfections.
- Control of background from MDM at level $\Delta c = 2.8 \times 10^{-6}$ rad.
- Systematics-limited sensitivity for deuteron EDM at COSY $\sigma_d \approx 10^{-20} \, {\rm e\, cm}$.

Prototype EDM storage ring

Next step:

- Build demonstrator for charged-particle EDM.
- Project prepared by a new **CPEDM** collaboration (CERN + JEDI + srEDM).
 - Physics Beyond Collider process (CERN), and the
 - European Strategy for Particle Physics Update.
- Possible host sites: COSY or CERN

Scope of prototype ring of 100 m circumference:

- *p* at 30 MeV all-electric CW-CCW beams operation.
- *p* at 45 MeV frozen spin including additional vertical magnetic fields

- Storage time
- CW/CCW operation
- Spin coherence time
- Polarimetry
- magnetic moment effects
- Stochastic cooling
- pEDM measurement

Frank Rathmann (f.rathmann@fz-juelich.de)

Charged Particle Electric Dipole Moment Collaboration¹

Stages of project planning and time frame:

1	2	3
	\Rightarrow =	\Rightarrow
Precursor Experiment	Prototype Ring	All-electric Ring
dEDM proof-of-capability	pEDM proof-of-principle	pEDM precision experiment
(orbit and polarization control;	(key technologies,	(sensitivity goal: $10^{-29} \mathrm{ecm}$)
first dEDM measurement)	first direct pEDM meas.	
- Magnetic storage ring	- High-current all-electric ring	- Frozen-spin all-electric ring
- Polarized deuterons	- Simultaneous CW/CCW op.	(at $p=0.7{ m GeV/c})$
- d-carbon polarimetry	- Frozen spin control (with	- Simultaneous CW/CCW op.
- RF Wien filter	combined E/B ring)	- B-shielding, high E fields
	- Phase-space beam cooling	- Design: cryogenic, hybrid,
Ongoing at COSY Jülich	Ongoing within CPEDM	After construction and
		operation of prototype
2014 ightarrow 2021	2017 $ ightarrow$ 2020 (CDR) $ ightarrow$ 2022 TDR	> 2027?
	Start construction > 2022	

Electric Dipole Moment Searches using Storage Rings

¹http://pbc.web.cern.ch/edm/edm-default.htm

Proof of principle experiment using COSY Precursor experiment

Highest EDM sensitivity shall be achieved with a new type of machine:

- An electrostatic circular storage ring, where
 - centripetal force produced primarily by electric fields.
 - *E* field couples to EDM and provides required sensitivity ($< 10^{-28} \text{ e cm}$).
 - In this environment, magnetic fields mean evil (since μ is large).

Idea behind proof-of-principle experiment with novel RF Wien filter $(\vec{E} \times \vec{B})$:

- In magnetic machine, particle spins (deuterons, protons) precess about stable spin axis (\simeq direction of magnetic fields in dipole magnets).
- Use RF device operating on some harmonic of the spin-precession frequency:
 - \Rightarrow *Phase lock* between spin precession and device RF.
 - \Rightarrow Allows one to accumulate EDM effect as function of time in cycle (\sim 1000 s).

Goal of proof-of-principle experiment:

Show that conventional storage ring useable for first direct EDM measurement

RF Wien filter

A couple more aspects about the technique:

• RF Wien filter $(\vec{E} \times \vec{B})$ avoids coherent betatron oscillations in the beam:

- Lorentz force $\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = 0.$
- EDM measurement mode: $\vec{B} = (0, B_y, 0)$ and $\vec{E} = (E_x, 0, 0)$.

• Deuteron spins lie in machine plane.

• If $d \neq 0 \Rightarrow accumulation$ of vertical polarization P_y , during spin coherence time $\tau_{SCT} \sim 1000 \text{ s.}$

Statistical sensitivity:

- in the range 10^{-23} to 10^{-24} e cm for d(deuteron) possible.
- Systematic effects: Alignment of magnetic elements, magnet imperfections, imperfections of RF-Wien filter etc.

Model calculation of EDM buildup with RF Wien filter

Ideal COSY ring with deuterons at $p_d = 970 \text{ MeV/c}$:

• G = -0.143, $\gamma = 1.126$, $f_s = f_{
m rev}(\gamma G + K_{(=0)}) pprox 120.765 \,
m kHz$

Electric RF field integral assumed 1000 × ∫ E_{WF} · dℓ ≈ 2200 kV (w/o ferrites) [20, 2016].

EDM accumulates in $P_y(t) \propto d_{\text{EDM}}$ [19, 21, 22].

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (f.rathmann@fz-juelich.de)

Design of waveguide RF Wien filter

Joint Jülich – RWTH Aachen development:

- Institute of High Frequency Technology, RWTH Aachen University:
 - Heberling, Hölscher, and PhD Student Jamal Slim, and ZEA-1 of Jülich.
- Waveguide provides $\vec{E} \times \vec{B}$ by design.
- Minimal $\vec{F_L}$ by careful electromagnetic design of all components [20].

Internal structure

Aim was to build the best possible device, with respect to

- Electromagnetic performance [20] and mechanical tolerances [23].
- Excellent cooperation with RWTH Aachen University and ZEA-Jülich.

Proof of principle EDM experiment using COSY Technical realization of RF Wien filter

Electromagnetic field simulations (incl. ferrites) [24]

Full-wave simulations

• using CST Microwave Studio^a.

^aComputer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com

At an input power of 1 kW, magnetic and electric field integrals are ($\ell = 1.550$ m):

$$\int_{-\ell/2}^{\ell/2} \vec{B} dz = \begin{pmatrix} 2.73 \times 10^{-9} \\ 2.72 \times 10^{-2} \\ 6.96 \times 10^{-7} \end{pmatrix} \operatorname{Tmm}, \quad \int_{-\ell/2}^{\ell/2} \vec{E} dz = \begin{pmatrix} 3324.577 \\ 0.018 \\ 0.006 \end{pmatrix} \operatorname{V}$$
(11)

29/61

Frequencies of RF Wien filter

Resonance condition:

$$f_{\mathsf{WF}} = f_{\mathsf{rev}} \left(\gamma \mathsf{G} \pm \mathsf{K} \right) \,, \mathsf{k} \in \mathbb{Z}. \tag{12}$$

- RF Wien filter operates at frequencies between 0 to 2 MHz,
- Open symbols not reachable with present setup of driving circuit, *i.e.*,
 - deuterons at K = 0 (-120.8 kHz), and
 - protons at K = -2 (39.4 kHz).

Lorentz force compensation [20]

Integral Lorentz force is of order of $-3 \,\text{eV/m}$:

- Electric force F_e, magnetic force F_m, and Lorentz force F_L inside RF Wien filter.
- Trapezoid-shaped electrodes determine crossing of electric and magnetic forces.

Lorentz force

$$\vec{F}_{\rm L} = q \left(\vec{E} + \vec{v} \times \vec{B} \right), \qquad (13)$$

- particle charge q, velocity vector $\vec{v} = c(0, 0, \beta)$, fields $\vec{E} = (E_x, E_y, E_z)$ and $\vec{B} = \mu_0(H_x, H_y, H_z)$, μ_0 vacuum permeability.
- For vanishing Lorentz force $\vec{F}_{L} = 0$, field quotient Z_q given by

$$\mu_0 \cdot H_y \quad \Rightarrow \quad \left| Z_q = -\frac{E_x}{H_y} = c \cdot \beta \cdot \mu_0 \approx 173 \ \Omega \right|.$$
 (14)

 $E_{\mathbf{x}} = -\boldsymbol{c} \cdot \boldsymbol{\beta} \cdot$

Installation at COSY II

View along the beam axis in the RF Wien filter.

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (f.rathmann@fz-juelich.de)

Effect of EDM on stable spin axis of the ring

Beam particles move along z direction

- Presence of an EDM $\Rightarrow \xi_{EDM} > 0$.
- \Rightarrow Spins precess around the \vec{c} axis.
- \Rightarrow Oscillating vertical polarization component $p_y(t)$ is generated.

Evolution for 10 turns $[\vec{p_0} = (0, 0, 1)]$

- $p_x(t)$, $p_z(t)$ and $p_y(t)$.
- Bunch revolution indicated as well.
- p_y oscillation amplitude corresponds to tilt angle ξ_{EDM} .

Strength of EDM resonance

EDM induced vertical polarization oscillations,

• can generally be described by

$$p_{y}(t) = a \sin(\Omega^{p_{y}} t + \phi_{\mathsf{RF}}).$$
(15)

• Define **EDM resonance strength** ε^{EDM} as ratio of angular frequency Ω^{p_y} relative to orbital angular frequency Ω^{rev} ,

$$\Sigma^{\mathsf{EDM}} = rac{\Omega^{m{
ho}_y}}{\Omega^{\mathsf{rev}}} \ ,$$

Alternatively, ε^{EDM} is determined from the measured initial slopes $\dot{p}_y(t)|_{t=0}$

• through variation of
$$\phi_{\text{RF}}$$

 $\varepsilon^{\text{EDM}} = \frac{\dot{p}_y(t)|_{t=0}}{a \cos \phi_{\text{RF}}} \cdot \frac{1}{\Omega^{\text{rev}}}.$ (17) $\vec{P}_y(t)$
• If $|\vec{P}| = 1 \Rightarrow \dot{p}_y(t) = \dot{\alpha}(t)$
 $\vec{P}_{xz}(t)$
 $\vec{P}_{xz}(t)$

First measurement of EDM-like buildup signals

Rate of out-of-plane rotation angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

- *B* field of RF Wien filter normal to the ring plane.
- Wien filter operated at $f_{WF} = 871 \text{ kHz}$.
- Variations of $\phi_{\rm rot}^{\rm WF}$ and $\chi_{\rm rot}^{\rm Sol\,1}$ affect the pattern of observed initial slopes $\dot{\alpha}$.

Planned measurements:

- 1st EDM measurement run Nov-Dec/2018 (6 wk, ongoing).
- 2nd run planned for Fall/Winter 2019 (6 wk).

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (f.rathmann@fz-juelich.de)

Expectation for $d = 10^{-20} \text{ e cm}$ in ideal COSY ring

Resonance strengths ε^{EDM} from Eq. (16) (\approx 175 random-points)

•
$$\phi_{\mathsf{rot}}^{\mathsf{WF}} = [-1^\circ, \dots, +1^\circ]$$
,

•
$$\chi^{\mathsf{Sol}\,1}_{\mathsf{rot}} = [-1^{\,\circ}, \ldots, +1^{\,\circ}]$$
 (100 keV cooler), and

• Each point from calculation with $n_{turns} = 50\,000$ and $n_{points} = 200$.

Expectation for $d = 10^{-18} \text{ e cm}$ in ideal COSY ring

Resonance strengths ε^{EDM} from Eq. (16) (\approx 175 random-points)

•
$$\phi_{\rm rot}^{\rm WF} = [-0.1^{\,\circ}, \ldots, +0.1^{\,\circ}]$$
,

•
$$\chi^{\text{Sol 1}}_{\text{rot}} = [-0.1^{\circ}, \dots, +0.1^{\circ}]$$
 (100 keV cooler), and

• Each point from calculation with $n_{turns} = 200\,000$ and $n_{points} = 100$.

First results from the measurement in Nov.-Dec. 2018

Importance of spin tracking simulations

- Orientation of stable spin axis at location of RF Wien filter *including the EDM* is determined from minimum of map.
- Spin tracking calculations to provide orientation of stable spin axis w/o EDM.

Search for charged hadron particle EDMs (proton, deuteron, light ions):

• New window to disentangle sources of *CP* violation, and to possibly explain matter-antimatter asymmetry of the Universe.

Present investigations

- JEDI is making steady progress in spin dynamics of relevance to future searches for EDM.
- COSY remains a unique facility for such studies.
- First direct JEDI deuteron EDM measurement at COSY underway.
 - 6 wk run Nov.-Dec. '18, and planned 6 wk run in 2019.
 - Sensitivity 10^{-18} to 10^{-20} e cm.

Strong interest of high energy community in storage ring EDM searches

• protons and light nuclei as part of physics program of the post-LHC era:

- Physics Beyond Collider process (CERN), and
- European Strategy for Particle Physics Update.
- As part of this process, proposal for prototype EDM storage ring being prepared by CPEDM (possible hosts: CERN or COSY).

JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

- ~ 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...
- http://collaborations.fz-juelich.de/ikp/jedi

References I

- [1] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results, Astrophys. J. Suppl. 148 (2003) 1 [astro-ph/0302207].
- [2] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia and G. Steigman, Effective number of neutrinos and baryon asymmetry from BBN and WMAP, Phys. Lett. B566 (2003) 8 [hep-ph/0305075].
- [3] W. Bernreuther, CP violation and baryogenesis, Lect. Notes Phys. 591 (2002) 237 [hep-ph/0205279].
- [4] J. Bsaisou, J. de Vries, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi et al., Nuclear electric dipole moments in chiral effective field theory, Journal of High Energy Physics 2015 (2015) 1.
- [5] I. B. Khriplovich and S. K. Lamoreaux, *CP violation without strangeness: Electric dipole moments of particles, atoms, and molecules*. Berlin, Germany: Springer (1997) 230 p, 1997.

References II

- [6] J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [http://science.sciencemag.org/content/343/6168/269.full.pdf].
- [7] MUON (G-2) collaboration, *Improved limit on the muon electric dipole moment*, *Phys. Rev. D* **80** (2009) 052008.
- [8] K. Inami, K. Abe, K. Abe, R. Abe, T. Abe, I. Adachi et al., Search for the electric dipole moment of the τ lepton, Physics Letters B **551** (2003) 16.
- [9] L. Pondrom, R. Handler, M. Sheaff, P. T. Cox, J. Dworkin, O. E. Overseth et al., New limit on the electric dipole moment of the Λ hyperon, Phys. Rev. D 23 (1981) 814.
- [10] J. M. Pendlebury, S. Afach, N. J. Ayres, C. A. Baker, G. Ban, G. Bison et al., *Revised experimental upper limit on the electric dipole moment of the neutron*, *Phys. Rev. D* 92 (2015) 092003.
- [11] V. F. Dmitriev and R. A. Sen'kov, *Schiff moment of the mercury nucleus and the proton dipole moment*, *Phys. Rev. Lett.* **91** (2003) 212303.

References III

- [12] B. Graner, Y. Chen, E. G. Lindahl and B. R. Heckel, *Reduced limit on the permanent electric dipole moment of* ¹⁹⁹Hg, *Phys. Rev. Lett.* **116** (2016) 161601.
- [13] M. A. Rosenberry and T. E. Chupp, Atomic electric dipole moment measurement using spin exchange pumped masers of ¹²⁹Xe and ³He, Phys. Rev. Lett. 86 (2001) 22.
- [14] D. Albers et al., A Precision measurement of pp elastic scattering cross-sections at intermediate energies, Eur. Phys. J. A22 (2004) 125.
- [15] JEDI collaboration, New method for a continuous determination of the spin tune in storage rings and implications for precision experiments, Phys. Rev. Lett. 115 (2015) 094801.
- [16] I. Vasserman, P. Vorobyov, E. Gluskin, P. Ivanov, I. Koop, G. Kezerashvili et al., Comparison of the electron and positron anomalous magnetic moments: Experiment 1987, Physics Letters B 198 (1987) 302.
- [17] JEDI collaboration, How to reach a thousand-second in-plane polarization lifetime with 0.97-GeV/c deuterons in a storage ring, Phys. Rev. Lett. 117 (2016) 054801.

References IV

- [18] JEDI collaboration, *Phase locking the spin precession in a storage ring*, *Phys. Rev. Lett.* **119** (2017) 014801.
- [19] JEDI collaboration, Spin tune mapping as a novel tool to probe the spin dynamics in storage rings, Phys. Rev. Accel. Beams **20** (2017) 072801.
- [20] J. Slim, R. Gebel, D. Heberling, F. Hinder, D. Hölscher, A. Lehrach et al., Electromagnetic simulation and design of a novel waveguide rf wien filter for electric dipole moment measurements of protons and deuterons, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 828 (2016) 116.
- [21] F. Rathmann, A. Saleev and N. N. Nikolaev, The search for electric dipole moments of light ions in storage rings, J. Phys. Conf. Ser. 447 (2013) 012011.
- [22] Y. F. Orlov, W. M. Morse and Y. K. Semertzidis, Resonance method of electric-dipole-moment measurements in storage rings, Phys. Rev. Lett. 96 (2006) 214802.

References V

- [23] J. Slim, F. Rathmann, A. Nass, H. Soltner, R. Gebel, J. Pretz et al., Polynomial chaos expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide {RF} wien filter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 859 (2017) 52.
- [24] J. Slim et al., Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons, Nucl. Instrum. Meth. A828 (2016) 116 [1603.01567].
- [25] N. Brantjes, V. Dzordzhadze, R. Gebel, F. Gonnella, F. Gray, D. van der Hoek et al., Correcting systematic errors in high-sensitivity deuteron polarization measurements, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664 (2012) 49.
- [26] K. Grigoryev, F. Rathmann, A. Stahl and H. Ströher, *Electrostatic deflector studies using small prototypes*, 1812.07954.
- [27] P. W. Graham and S. Rajendran, *Axion dark matter detection with cold molecules*, *Phys. Rev. D* **84** (2011) 055013.

Electric Dipole Moment Searches using Storage Rings

References VI

[28] S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park and Y. K. Semertzidis, Axion dark matter search using the storage ring EDM method, PoS PSTP2017 (2018) 036 [1710.05271].

Spare Slides

More technical challenges of storage ring EDM experiments

Charged particle EDM searches require development of new class of high-precision machines with mainly electric fields for bending and focussing:

Main issues:

- $\bullet\,$ Large electric field gradients ~ 10 to $20\,MV/m.$
- Spin coherence time $\tau_{\rm SCT} \sim 1000\,{\rm s}$ [17, 2016].
- Continuous polarimetry with relative errors < 1 ppm [25, 2012].
- Beam position monitoring with precision of 10 nm.
- High-precision spin tracking.
- Alignment of ring elements, ground motion, ring imperfections.
- Magnetic shielding.
- For deuteron EDM with frozen spin: precise reversal of magnetic fields for CW and CCW beams required.

E/B Deflector development using small-scale lab setup [26] Work by Kirill Grigoriev (IKP, RWTH Aachen and FZJ)

- Polished stainless steel
 - 240 MV/m reached at distance of 0.05 mm with half-sphere facing flat surface.
 - 17 MV/m with 1 kV at 1 mm with two small half-spheres.
- Polished aluminum
 - 30 MV/m measured at distance of 0.1 mm using two small half-spheres.
- TiN coating
 - Smaller breakdown voltage.
 - Zero dark current.

Recent results

Dark current of stainless-steel half-sphere electrodes (10 mm radius)

• distances S = 1, 0.5, and 0.1 mm, where

$$E_{\max} = \frac{U}{S} \cdot F, \text{ where } F = \frac{1}{4} \left[1 + \frac{S}{R} + \sqrt{\left(1 + \frac{S}{R}\right)^2 + 8} \right], \quad (18)$$

Results promising, but tests with real size deflector elements are necessary.

Electric Dipole Moment Searches using Storage Rings

E/B deflector development using real-scale lab setup

Equipment:

- Dipole magnet $B_{max} = 1.6 \text{ T}$
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and deflector

Parameters:

- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. electric field = $\pm 200 \text{ MV}$
- Material: Aluminum coated by TiN

Next steps:

Equipment ready for assembling. First test results expected before Christmas.

Electric Dipole Moment Searches using Storage Rings

Beam position monitors for srEDM experiments PhD work of Falastine Abusaif, improving earlier work by F. Trinkel

Development of compact BPM based on segmented Rogowski coil

• Main advantage is short installation length of pprox 1 cm (along beam direction)

Conventional BPM

- Easy to manufacture
- length $= 20 \, \text{cm}$
- resolution pprox 10 μm

Rogowski BPM (warm)

- Excellent RF-signal response
- length $= 1 \, \text{cm}$
- resolution pprox 1.25 μ m

electric Wpole Rogenty seakies coil BPP Missinstalled at entrance and exit of fuelich.de Wien filter

Assembly stages of one Rogowski-coil BPM

Measured beam positions at entrance of RF Wien filter

dC polarimetry data base I

Data analysis mainly by Maria Zurek and PhD Fabian Müller

Motivation: Optimize polarimetry for ongoing JEDI experiments:

- Determine vector and tensor analyzing powers A_y , A_{yy} , and differential cross sections $d\sigma/d\Omega$ of dC elastic scattering at
 - deuteron kinetic energies $T = 170 380 \,\text{MeV}$.

Detector system: former WASA forward detector, modified

- Targets: C and CH2
- Full azimuthal coverage, scattering angle range $\theta = 4^{\circ} 17^{\circ}$.

Frank Rathmann (f.rathmann@fz-juelich.de)

dC polarimetry data base II

Preliminary results of elastic dC analyzing powers

- Analysis of differential *dC* cross sections in progress.
- Similar data base measurements carried out to provide *pC* data base.

High-precision beam polarimeter with internal C target Development led by Irakli Keshelashvili

Based on LYSO Scintillation Material

- Saint-Gobain Ceramics & Plastics: Lu_{1.8}Y_{.2}SiO₅:Ce
- Compared to Nal, LYSO provides
 - high density (7.1 vs 3.67 g/cm^3),
 - very fast decay time (45 vs 250 ns).

After several runs with external beam:

- System ready for installation at COSY in 2019.
- Not yet ready: Ballistic diamond pellet target for homogeneous beam sampling.

Driving circuit

Realization with load resistor and tunable elements (L's and C's):

• Design layout using four separate 1 kW power amplifiers.

Circuit fully operational

- Tuneable elements^a allow [20]:
 - minimization of Lorentz-force, and
 - velocity matching to β of the beam.
- Power upgrade to $4 \times 2 \text{ kW}$: $\int B_z dz = 0.218 \text{ T mm}$ possible.

^abuilt by Fa. Barthel, http://www.barthel-hf.de.

RF Wien filter Installation at COSY

• RF Wien filter between PAX magnets. Upstream Rogowski coil; racks with power amplifiers, each unit delivers up to 500 W; water-cooled 25Ω resistor.

Electric Dipole Moment Searches using Storage Rings

Frank Rathmann (f.rathmann@fz-juelich.de)

(Oscillating) Axion-EDM search using storage ring

Motivation: Paper by Graham and Rajendran [27, 2011]

• Oscillating axion field is coupled with gluons and induces an oscillating EDM in hadronic particles.

Measurement principle:

- When oscillating EDM resonates with particle g 2 precession frequency in the storage ring, the EDM precession can be accumulated.
- Due to strong effective electric field (from $\vec{v} \times \vec{B}$), sensitivity improved significantly.

Courtesy of Seongtae Park (IBS, Daejeon, ROK)

Limits for axion-gluon coupled to oscillating EDM

Figure from S.P. Chang et al. [28]

Realization

- No new/additional equipment required!
- Can be done in magnetic storage ring (*i.e.*, COSY).
- Proposal for test beam time accepted by CBAC.
- Experiment scheduled for I/2019.