Lectures on the Theory of hadronic electric-dipole moments

Lake Bazaleti, Georgia | 26 – 28 September 2013 | Andreas Wirzba

1 Motivation: Matter–Antimatter Asymmetry in the Universe

- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources in the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources in the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- **5** Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- **5** Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (*e.g.* an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (*e.g.* an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- 1 End of inflation: $n_B = n_{\bar{B}}$
 - 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
 - Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5 \text{ y}$:
 - ? SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - ! WMAP+COBE (2003) *observation*: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
 - Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5$ y:
 - ? SM(s) prediction: $(n_B - n_{\overline{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - ! WMAP+COBE (2003) *observation*: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
- 3 Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5$ y:
 - ? SM(s) prediction: $(n_B - n_{\overline{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - ! WMAP+COBE (2003) observation: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

Baryogenesis, Big Bang Nucleosynthesis & Cosmic Microwave Background

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
- 3 Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5$ y:
 - ? SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$

WMAP+COBE (2003) *observation*: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
- 3 Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5$ y:
 - ? SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - ! WMAP+COBE (2003) observation: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 Big Bang Nucleosynth. t_{BBN} ~ 1 min
- 3 Cosmic Microwaves $t_{CMB} \sim 3 \times 10^5$ y:
 - ? SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - ! WMAP+COBE (2003) *observation*: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$ What is missing?

Motivation: Baryon Asymmetry in the Universe

Nature has probably violated CP when generating the Baryon asymmetry !? **Observed*:** $(n_{\rm B}-n_{\rm B}) / n_{\rm v} = 6 \times 10^{-10}$ SM expectation: $(n_{\rm B} - n_{\rm B}) / n_{\rm v} \sim 10^{-18}$ Sakharov 1967: **B**-violation WMAP + COBE, 2003 C & CP-violation $n_B / n_y = (6.1 \pm 0.3) \times 10^{-10}$ non-equilibrium $(6.19 \pm 0.15) \times 10^{-10}$

[E. Komatsu et al. 2011 ApJS 192]

(adapted from Klaus Kirch (PSI), Fermilab, Feb. 13, 2013)

[JETP Lett. 5 (1967) 24]

- baryon number B violationto depart from initial B = 0
- **2** C and CP violation to distinguish *B* and \overline{B} production rates
- 3 violation of thermal equilibrium ... to escape $\langle B \rangle$ =0 if CPT holds
- Investigation of GP: possible window to physics beyond SM
- Complementary processes:

Sakharov Conditions

- high-energy collider experiments (new particles, EWSB, ...)
- high-precision low-energy experiments (flavor-neutral EDMs, $\mu \rightarrow e_{\gamma}$ search (a)

Dynamical generation of net baryon number

requires the concurrence of three (sufficient) conditions:

requires the concurrence of three (sufficient) conditions:

Sakharov Conditions

- baryon number B violationto depart from initial B = 0
- **2** C and CP violation to distinguish B and \overline{B} production rates
- 3 violation of thermal equilibrium ... to escape $\langle B \rangle$ =0 if CPT holds
- Investigation of GP: possible window to physics beyond SM
- Complementary processes:
 - high-energy collider experiments (new particles, EWSB, ...)
 - high-precision low-energy experiments
 (flavor poutral EDMs, up an source).

ETP Lett. 5 (1967) 24

requires the concurrence of three (sufficient) conditions:

Sakharov Conditions

- baryon number B violationto depart from initial B = 0
- **2** C and CP violation to distinguish B and \overline{B} production rates
- 3 violation of thermal equilibrium ... to escape $\langle B \rangle = 0$ if CPT holds
- Investigation of CP: possible window to physics beyond SM
- Complementary processes:
 - high-energy collider experiments (new particles, EWSB, ...)
 - high-precision low-energy experiments (flavor-neutral EDMs, $\mu \rightarrow e\gamma$ search, (*q* –

ETP Lett. 5 (1967) 2

requires the concurrence of three (sufficient) conditions:

Sakharov Conditions

- baryon number B violationto depart from initial B = 0
- **2** C and CP violation to distinguish B and \overline{B} production rates
- 3 violation of thermal equilibrium ... to escape $\langle B \rangle = 0$ if CPT holds
- Investigation of CP: possible window to physics beyond SM
- Complementary processes:
 - high-energy collider experiments (new particles, EWSB, ...)
 - high-precision low-energy experiments

(flavor-neutral EDMs, $\mu \rightarrow e\gamma$ search, $(g-2)_{\mu}, \ldots$)

requires the concurrence of three (sufficient) conditions:

Sakharov Conditions

- baryon number B violationto depart from initial B = 0
- **2** C and CP violation to distinguish B and \overline{B} production rates
- 3 violation of thermal equilibrium ... to escape $\langle B \rangle = 0$ if CPT holds
- Investigation of CP: possible window to physics beyond SM
- Complementary processes:
 - high-energy collider experiments (new particles, EWSB, ...)
 - high-precision low-energy experiments

(flavor-neutral EDMs, $\mu \rightarrow e\gamma$ search, $(g-2)_{\mu}, \ldots$)

The Electric Dipole Moment (EDM)

EDM:
$$\vec{d} = \sum_{i} \vec{l}_{i} e_{i} \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / |\vec{S}|$$

(polar)
 $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} - d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
P: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
T: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$

Any non-vanishing EDM of some subatomic particle violates P & T

- Assuming CPT to hold, CP is violated as well → subatomic EDMs: "rear window" to CP violation in early universe
- Strongly suppressed in SM (CKM-matrix): $d_n \sim 10^{-31} e \text{ cm}$, $d_e \sim 10^{-38} e \text{ cm}$
- Current bounds: $d_n < 3 \cdot 10^{-26} e \text{ cm}$, $d_p < 8 \cdot 10^{-25} e \text{ cm}$, $d_e < 1 \cdot 10^{-27} e \text{ cm}$ *n*: Baker et al.(2006), *p* prediction: Dimitriev & Sen'kov (2003)*, *e*: Baron et al.(2013)[†] * input from ¹⁹⁹Hg atom EDM measurement of Griffith et al. (2009)

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N=\frac{e}{2m_p}\sim 10^{-14}e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot m_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2})$,

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(\mathcal{K}_L^0 \to \pi^+\pi^-)| / |\mathcal{A}(\mathcal{K}_S^0 \to \pi^+\pi^-)| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $m_{\pi}^2 G_F$ factor to undo flavor change

→
$$d_N^{\text{SM}} \sim 10^{-7} \times 10^{-24} e \text{ cm} \sim 10^{-31} e \text{ cm}$$

 \rightarrow The empirical window for search of physics BSM(θ =0) is

 $10^{-24}e$ cm > d_N > $10^{-30}e$ cm.

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N=\frac{e}{2m_p}\sim 10^{-14}e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot m_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2})$,

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(\mathcal{K}_L^0 \to \pi^+\pi^-)| / |\mathcal{A}(\mathcal{K}_S^0 \to \pi^+\pi^-)| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $m_{\pi}^2 G_F$ factor to undo flavor change

$$\Rightarrow \quad d_N^{\rm SM} \sim 10^{-7} \times 10^{-24} e \, {\rm cm} \, \sim \, 10^{-31} e \, {\rm cm}$$

 \hookrightarrow The empirical window for search of physics BSM(θ =0) is

 $10^{-24}e\,\mathrm{cm} > d_N > 10^{-30}e\,\mathrm{cm}.$

Chronology of upper bounds on the neutron EDM

 \Rightarrow 5 to 6 orders above SM predictions which are out of reach !

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d}$$
 & $\vec{J} \to \pm \vec{J}$ under
{ space reflection, time reversal.

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathfrak{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be 'elementary' particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

 $\vec{d} \to \mp \vec{d}$ & $\vec{J} \to \pm \vec{J}$ under { space reflection, time reversal.

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...)

'Isn't an elementary particle a point-particle without structure? How can such a particle be polarized and support an EDM?'

There are always vacuum polarizations with rich short-distance structure

(g-2 of the electron and muon aren't exactly zero either)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathfrak{P} \& \mathcal{T}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathfrak{P} \& \mathcal{T}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H_2O or NH_3 molecules?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* *non*-selfconjugate particle is *not* its own antiparticle \Rightarrow at least one "charge" *non*-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'What about the huge EDMs of H_2O or NH_3 molecules?'

The ground states of these molecules at non-zero temperatures or strong *E*-fields are mixtures of at least 2 opposite parity states:

The theorem doesn't apply for degenerate states: neither \mathcal{X} nor \mathcal{P} !

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathfrak{P} \& \mathcal{T}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{\mathsf{P}}\rangle$ has *no* degeneracy (besides rotational), then $\mathfrak{P} \& \mathfrak{X}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

'But what about the induced EDM (polarization)?'

The induced EDM is *quadratic* in the electric field and *not* \mathcal{P} or \mathcal{T}

induced EDM \leftrightarrow quadratic Stark effect ($\propto E^2$) permanent EDM \leftrightarrow linear Stark effect ($\propto E$)

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = d \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and nonzero spin *j*, such that

$$\vec{d} \to \mp \vec{d} \& \vec{J} \to \pm \vec{J}$$
 under
 $\begin{cases} \text{space reflection,} \\ \text{time reversal.} \end{cases}$

If $d \neq 0$ and $|j^{P}\rangle$ has *no* degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{T}$.

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

State $|j^{P}\rangle$ can be *'elementary'* particle (quark, charged lepton, W^{\pm} boson, Dirac neutrino, ...) or a *'composite'* neutron, proton, nucleus, atom, molecule.

If the interactions are described by an action which is

local, Lorentz-invariant, and hermitian

then CPT invariance holds: thus

$$\mathcal{T} \iff \mathcal{QP}$$

 $q^2 = (p' - p)^2$

Permanent EDMs and Form Factors

Here $s = \frac{1}{2}$ fermions (*f* = quark, lepton, nucleon)

• $\langle f(p')|J_{\text{em}}^{\mu}|f(p)\rangle = \bar{u}_f(p')\Gamma^{\mu}(q^2)u_f(p)$

$$\Gamma_{f}^{\mu}(q^{2}) = \gamma^{\mu}F_{1,f}(q^{2}) + i\sigma^{\mu\nu}q_{\nu}\frac{F_{2,f}(q^{2})}{2m_{f}} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}\frac{F_{3,f}(q^{2})}{2m_{f}} p + (\oint q^{\mu} - q^{2}\gamma^{\mu})\gamma_{5}F_{a,f}(q^{2})/m_{f}^{2}$$

(Dirac $F_1(q^2)$, Pauli $F_2(q^2)$, electric dipole $F_3(q^2)$, and anapole $F_a(q^2)$ FFs)

• Quark, lepton or nucleon EDM $d_f := F_{3,f}(q^2 \to 0)/(2m_f)$ $\mathcal{H}_{\text{eff}} = i \frac{d_f}{2} \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu} \xrightarrow{\text{non-rel.}} -d_f \langle \sigma \rangle \cdot \mathbf{E} \longrightarrow \text{linear Stark effect}$

 $q^2 = (p' - p)^2$

Permanent EDMs and Form Factors

Here $s = \frac{1}{2}$ fermions (*f* = quark, lepton, nucleon)

• $\langle f(p')|J_{\text{em}}^{\mu}|f(p)\rangle = \bar{u}_f(p')\Gamma^{\mu}(q^2)u_f(p)$

$$\Gamma_{f}^{\mu}(q^{2}) = \gamma^{\mu}F_{1,f}(q^{2}) + i\sigma^{\mu\nu}q_{\nu}\frac{F_{2,f}(q^{2})}{2m_{f}} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}\frac{F_{3,f}(q^{2})}{2m_{f}} p + (\oint q^{\mu} - q^{2}\gamma^{\mu})\gamma_{5}F_{a,f}(q^{2})/m_{f}^{2}$$

(Dirac $F_1(q^2)$, Pauli $F_2(q^2)$, electric dipole $F_3(q^2)$, and anapole $F_a(q^2)$ FFs)

- Quark, lepton or nucleon EDM $d_f := F_{3,f}(q^2 \to 0)/(2m_f)$ $\mathcal{H}_{\text{eff}} = i \frac{d_f}{2} \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu} \xrightarrow{\text{non-rel.}} -d_f \langle \sigma \rangle \cdot \mathbf{E} \longrightarrow \text{linear Stark effect}$
- Likewise chromo quark EDM with CP gluon-quark-quark vertex:

$$\frac{d_{cq}}{2} \bar{q} \sigma^{\mu\nu} \gamma_5 T^a G^a_{\mu\nu} q$$

or weak dipole moment (WDM) with Z-boson *f-f* vertex: $i \frac{d_f^2}{2} \bar{f} \sigma^{\mu\nu} \gamma_5 f Z_{\mu\nu}$.

Generic features of EDM, chromo EDM or WDM

$$\mathcal{L}_{\mathsf{EDM}} = -\mathsf{i}\frac{d_f}{2}\,\overline{f}\sigma_{\mu\nu}\gamma_5 f\,F^{\mu\nu} = -\mathsf{i}\frac{d_f}{2}\,\overline{f}_{\mathsf{L}}\,\sigma_{\mu\nu}f_{\mathsf{R}}\,F^{\mu\nu} + \mathsf{i}\frac{d_f}{2}\,\overline{f}_{\mathsf{R}}\,\sigma_{\mu\nu}f_{\mathsf{L}}\,F^{\mu\nu}$$

- Sum of the mass dimension of these fields: $\frac{3}{2} + \frac{3}{2} + 2 = 5$, $\Rightarrow \dim(d_f) = e \times \text{length} = e \times \text{mass}^{-1}$ (such that $\int d^4x \, \mathcal{L} \sim \text{mass}^0$) \Rightarrow non-renormalizable *effective* interaction
- **2** For any non-zero EDM (or WDM), \mathcal{CP} is flavor *diagonal*! Note that \mathcal{CP} in SM model (via CKM matrix) is flavor *changing*. \rightarrow extra $\sim 10^{-7}$ factor multiplies naive estimate $d_n \simeq 10^{-24} e$ cm.
- 3 Chirality in \mathcal{L}_{EDM} flipped: $\frac{1}{2}(\mathbf{1} \gamma_5)f = f_L \leftrightarrow f_R = \frac{1}{2}(\mathbf{1} + \gamma_5)f$ \Rightarrow fermion mass m_f insertion (e.g. via Higgs mechanism) needed: $d_f \propto m_f^n$, n = 1, 2, 3 (depending on the model of \mathcal{QP}) $\Rightarrow \mathcal{QP}$ beyond SM: $\mathcal{L}_{BSM}^{\mathcal{QP}} = \frac{1}{M_{TVOI}} \mathcal{L}_{dim 5} + \frac{1}{M_{2VOI}^2} \mathcal{L}_{dim 6} + \dots$

CP violation in the Standard Model

The conventional source: Kobayashi-Maskawa mechanism

Empirical facts: 3 generations of u/d quarks (& e/ν leptons)

- $u: m_u < m_c < m_t, d: m_d < m_s < m_b, and l: m_e < m_\mu < m_\tau$
- quarks & leptons in mass basis ≠ quarks & leptons in weak-int. basis
- $\textbf{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{gauge-fermion} + \mathcal{L}_{gauge-Higgs} + \mathcal{L}_{Higgs-fermion} \quad \text{is CP inv.},$
 - with the exception of the θ term of QCD (see later)

and the charged-weak-current interaction ($\subset \mathcal{L}_{gauge-fermion}$)

$$\mathcal{L}_{\mathbf{c}\cdot\mathbf{w}\cdot\mathbf{c}} = -\frac{g_{w}}{\sqrt{2}} \sum_{ij=1}^{3} \bar{d}_{Li} \gamma^{\mu} \mathbf{V}_{ij} u_{Lj} W_{\mu}^{-} - \frac{g_{w}}{\sqrt{2}} \sum_{ij=1}^{3} \bar{\ell}_{Li} \gamma^{\mu} \mathbf{U}_{ij} \nu_{Lj} W_{\mu}^{-} + \text{h.c.}$$

V:3 × 3 unitary quark-mixing matrix
 (Cabibbo-Kobayashi-Maskawa m.)

3 angles + 1 \mathcal{P} phase δ_{KM}

U: 3 × 3 unitary lepton-mixing matrix (Maki-Nakagawa-Sakata matrix) 3 angles +1(3) Q^P phase(s) for Dirac (Majorana) ν_i 's

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \frac{J_{\text{KM}}}{J_{\text{ariskog (1985)}}}$$

$$\Rightarrow \left| (n_B - n_{\bar{B}}) / n_{\gamma} \right|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} \text{e cm} \sim 10^{-34} \text{e cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

1 loop:

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \mathbf{J}_{\mathsf{KM}} \simeq 10^{-15} \mathbf{J}_{\mathsf{KM}},$$
_{Jarlskog} (1985)

$$\Rightarrow \left[(n_B - n_{\bar{B}})/n_{\gamma} \right]_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \, \text{cm} \sim 10^{-34} e \, \text{cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

2 loops:

$$d_{\text{quark}}^{2\text{-loop}} = d_{\text{chromo q}}^{2\text{-loop}} = 0$$

Shabalin (1978)

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \mathbf{J}_{\mathsf{KM}} \simeq 10^{-15} \mathbf{J}_{\mathsf{KM}},$$
_{Jariskog} (1985)

$$\Rightarrow \left| (n_B - n_{\bar{B}}) / n_{\gamma} \right|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} \text{e cm} \sim 10^{-34} \text{e cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

 $d_n^{\text{KM}} \simeq 10^{-32} e \text{ cm}$ because of long-range pion & 'strong penguin' Gavela; Khriplovich & Zhitnitsky ('82)

$$\propto \left(\frac{m_t^2 - m_c^2}{M_{EW}^2}\right) \left(\frac{m_c^2 - m_u^2}{M_{EW}^2}\right) \left(\frac{m_t^2 - m_u^2}{M_{EW}^2}\right) \cdot \left(\frac{m_b^2 - m_s^2}{M_{EW}^2}\right) \left(\frac{m_s^2 - m_d^2}{M_{EW}^2}\right) \left(\frac{m_b^2 - m_d^2}{M_{EW}^2}\right) \cdot \mathbf{J}_{\mathsf{KM}} \simeq 10^{-15} \mathbf{J}_{\mathsf{KM}},$$
_{Jariskog} (1985)

$$\Rightarrow \left| (n_B - n_{\bar{B}}) / n_{\gamma} \right|_{T \sim 20 \text{MeV}}^{\text{SM}} \sim 10^{-20} \text{ and } d_n^{\text{SM}} \sim 10^{-20} \cdot 10^{-14} e \, \text{cm} \sim 10^{-34} e \, \text{cm}$$

EDM flavor-neutral \Rightarrow KM predictions tiny: $\mathcal{O}(G_F^2) \sim \mathcal{O}(g_W^4)$

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} & $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \qquad \text{(note: } \epsilon^{0123} = -\epsilon_{0123}\text{)}$$

• Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\leftrightarrow unknown$ coupling constant is actually $\overline{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} & $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \qquad \text{(note: } \epsilon^{0123} = -\epsilon_{0123}\text{)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_{I} \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ \rightarrow unknown coupling constant is actually $|\bar{\theta} = \theta + \arg \det \mathcal{M}_{\text{cuark}}|$
- Naive Dimensional Analysis (NDA) estimate of $\bar{\theta}$ -induced *n* EDM:

$$d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{m_n} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1).$$

$$d_n^{emp} < 2.9 \cdot 10^{-26} e \,\mathrm{cm} \rightsquigarrow \left| |\bar{\theta}| < 10^{-10} \right|$$

Andreas Wirzba

saker er al. (Ub)

strong CP prob

The topologically non-trivial vacuum structure of QCD

induces a direct \mathbb{P} & $\mathbb{T} \to \mathbb{CP}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \qquad \text{(note: } \epsilon^{0123} = -\epsilon_{0123}\text{)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow unknown$ coupling constant is actually $\overline{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$
- Naive Dimensional Analysis (NDA) estimate of $\bar{\theta}$ -induced *n* EDM:

$$d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{m_n} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1).$$

If also $P \sim 10^{-7}$ were included, the bound on *n* EDM effectively adds only 3 orders of magnitude to further constrain $\bar{\theta}$ (?)

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} & $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \qquad \text{(note: } \epsilon^{0123} = -\epsilon_{0123}\text{)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow unknown$ coupling constant is actually $\overline{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$
- Naive Dimensional Analysis (NDA) estimate of $\overline{\theta}$ -induced *n* EDM:

 $\begin{aligned} d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{m_n} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e\,\text{cm} \sim \bar{\theta} \cdot 10^{-16} e\,\text{cm} & \text{with } \bar{\theta} \sim \mathcal{O}(1). \\ 10^{-10} > |\bar{\theta}| > 10^{-14} \text{ eventually measurable via nonzero EDM, but} \\ \text{because of } \Lambda_{EWSB} \gg \Lambda_{\chi SB} \text{ it doesn't explain the cosmic matter surplus.} \\ \text{Andreas Wirzba} & 15|40| \end{aligned}$

The topologically non-trivial vacuum structure of QCD

induces a direct \mathcal{P} & $\mathcal{T} \sim \mathcal{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \qquad \text{(note: } \epsilon^{0123} = -\epsilon_{0123}\text{)}$$

- Anomalous $U_A(1)$ quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_f \bar{q}_f i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow unknown$ coupling constant is actually $\overline{\theta} = \theta + \arg \det \mathcal{M}_{\text{quark}}$
- Naive Dimensional Analysis (NDA) estimate of $\bar{\theta}$ -induced *n* EDM:

 $d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{m_n} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with} \ \bar{\theta} \sim \mathcal{O}(1).$

Thus \mathcal{QP} by new physics (NP) (*i.e.* dimension \geq 6 sources beyond SM) needed to explain the cosmic matter-antimatter asymmetry.

15 40

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

1 Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

- 1 Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$
 - integrate out BSM fields in running down to Higgs scale
 - integrate out Higgs boson by running down to EW scale
 - integrate out Z,W[±], heavy quarks by running down to 1 GeV scale
 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons
- 2 Transcribe these EDM operators into hadronic language using:
 - (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$
 - QCD sum rules
 - Lattice QCD calculations
 - Effective Field Theory
 Effective

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

1 Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

- integrate out BSM fields in running down to Higgs scale
- integrate out Higgs boson by running down to EW scale
- integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons

2 Transcribe these EDM operators into hadronic language using:

- (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$
- QCD sum rules
- Lattice QCD calculations
- Effective Field Theory
 Effective

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

1 Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

- integrate out BSM fields in running down to Higgs scale
- integrate out Higgs boson by running down to EW scale
- integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons

2 Transcribe these EDM operators into hadronic language using:

- (non)-relativistic quark models
 - e.g. $d_n = \frac{4}{3}d_d \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u \frac{1}{3}d_d$ (CM)
- QCD sum rules
- Lattice QCD calculations
- Effective Field Theory
 Effective

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

- integrate out BSM fields in running down to Higgs scale
- integrate out Higgs boson by running down to EW scale
- integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights
 formulated in terms of quarks and gluons

2 Transcribe these EDM operators into hadronic language using:

- (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$ • (QN)
- QCD sum rules
- Lattice QCD calculations
- Effective Field Theory
 Effective

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

- integrate out BSM fields in running down to Higgs scale
- integrate out Higgs boson by running down to EW scale
- integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons

2 Transcribe these EDM operators into hadronic language using:

- (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$ (QM)
- QCD sum rules
- Lattice QCD calculations
- Effective Field Theory (EFT)

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

- Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$
 - integrate out BSM fields in running down to Higgs scale
 - integrate out Higgs boson by running down to EW scale
 - integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons
- 2 Transcribe these EDM operators into hadronic language using:
 - (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$ (QM)
 - QCD sum rules
 - Lattice QCD calculations
 - Effective Field Theory (EFT)

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

- Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$
 - integrate out BSM fields in running down to Higgs scale
 - integrate out Higgs boson by running down to EW scale
 - integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights
 formulated in terms of quarks and gluons
- 2 Transcribe these EDM operators into hadronic language using:
 - (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$ • (QM)
 - QCD sum rules
 - Lattice QCD calculations
 - Effective Field Theory
 Effective

i.e. New Physics (NP) as e.g. SUSY, multi-Higgs, Left-Right-Symmetric Models?

Two-step procedure:

Pick NP models (or classes of models) at a scale $\Lambda_{NP} > m_{Higgs}$

- integrate out BSM fields in running down to Higgs scale
- integrate out Higgs boson by running down to EW scale
- integrate out Z, W[±], heavy quarks by running down to 1 GeV scale

 → dimension-6 EDM operators with specified weights formulated in terms of quarks and gluons
- 2 Transcribe these EDM operators into hadronic language using:
 - (non)-relativistic quark models e.g. $d_n = \frac{4}{3}d_d - \frac{1}{3}d_u$ and $d_p = \frac{4}{3}d_u - \frac{1}{3}d_d$ (QM)
 - QCD sum rules
 - Lattice QCD calculations
 - Effective Field Theory (EFT)

Outline:

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources in the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

Outline:

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- 5 Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

Outline:

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent Electric Dipole Moment and its Features
- 3 CP-Violating Sources *in* the Standard Model (SM)
- 4 CP-Violating Sources *Beyond* the Standard Model (BSM)
- **5** Electric Dipole Moments (EDMs) of the Nucleon
- 6 Electric Dipole Moments of the Deuteron and Helium-3
- 7 Conclusions and Outlook

Some questions that will hopefully be answered:

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

Some questions that will hopefully be answered:

- 1 Why is CP beyond the Standard Model expected?
- 2 How can a point-particle (e.g. an electron) support an EDM?
- 3 Why don't the EDMs of certain molecules predict a strong GP?
- 4 What is the natural scale of a neutron EDM?
- 5 How large is the EDM window for *New Physics* searches?
- 6 How can the EDM-producing sources be discriminated?
- 7 Why is low-energy Effective Field Theory needed here?

- All degrees of freedom beyond a specified scale are integrated out:
 - → remaining theory contains relevant degrees o.f. and 'irrelevant'
 contact terms governed by relevant (Lorentz + SM) symmetries
- Write down *all* interactions among the relevant degrees of freedom that respect the relevant symmetries
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom beyond a specified scale are integrated out:
 - → remaining theory contains relevant degrees o.f. and 'irrelevant'
 contact terms governed by relevant (Lorentz + SM) symmetries
- Write down *all* interactions among the relevant degrees of freedom that respect the relevant symmetries
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom beyond a specified scale are integrated out:
 - → remaining theory contains relevant degrees o.f. and 'irrelevant'
 contact terms governed by relevant (Lorentz + SM) symmetries
- Write down *all* interactions among the relevant degrees of freedom that respect the relevant symmetries
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

- All degrees of freedom beyond a specified scale are integrated out:
 - → remaining theory contains relevant degrees o.f. and 'irrelevant'
 contact terms governed by relevant (Lorentz + SM) symmetries
- Write down *all* interactions among the relevant degrees of freedom that respect the relevant symmetries
- Need a power-counting scheme to order these infinite # interactions
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

CP-violating sources beyond SM

Removal of the Higgs and transition to hadronic fields (plus mixing)

Add to SM all possible T- and P-odd contact interactions

Relevant 7 & P quark sources up to dimension 6

W. Dekens & J. de Vries (2013)

⁽adapted from Jordy de Vries, Jülich, March 14, 2013)

Total # =
$$1(\overline{\theta}) + 2(qEDM) + 2(qCEDM) + 1(gCEDM) + 1(FQLR) + 2(4q) [+3(semi-lept)]$$

= $1(dim-four) + 8[+3](dim-six)$

Caveat: implicit assumption that $m_s \gg m_u, m_d$

Road map from EDM Measurements to EDM Sources

Experimentalist's point of view

← Theorist's point of view

(adapted from Jordy de Vries, Jülich, March 14, 2013)

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

Symmetries (esp. chiral one) and Goldstone Theorem Low-Energy Effective Field Theory with External Sources *i.e.* Chiral Perturbation Theory (suitably extended)

 \rightarrow

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

• $\mathcal{L}_{QCD}^{\theta} = -\bar{\theta}m^* \sum_{f} \bar{q}_{f} i \gamma_5 q_{f}$: \mathcal{QP} , I $\Leftrightarrow \mathcal{M} \to \mathcal{M} + \bar{\theta}m^* i \gamma_5$, $m^* = \frac{m_u m_d}{m_u + m_d}$ $\Rightarrow \bar{\theta}$ source breaks chiral symmetry ($\propto m^*$) but *conserves* the isospin one: $\Rightarrow \boxed{g_0^{\theta} \gg g_1^{\theta}}$: NDA estimate: $g_1^{\theta}/g_0^{\theta} \sim \mathcal{O}(m_{\pi}^2/m_n^2)$ de Vries et al. (2011) resonance saturation: $g_1^{\theta}/g_0^{\theta} \sim \mathcal{O}(m_{\pi}/m_n)$! Basisou et al. (2013)

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- chromo quark EDM: chiral & isospin symmetries are broken because of quark masses ~ Goldstone theorem respected
- 4quark Left-Right EDM: explicit breaking of chiral & isospin symmetries because of underlying W boson exchange ~ Goldstone theorem does not apply

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- quark EDM: $N\pi$ (and NN) interactions are suppressed by $\alpha_{em}/(4\pi)$
- gluon color EDM (and chiral-4quark EDM): relative O(m²_π) suppression of Nπ interactions because of Goldstone theorem

Summary of scalings of CP hadronic vertices from θ to BSM sources

*: Goldstone theorem \rightarrow relative $\mathcal{O}(M_{\pi}^2/m_n^2)$ suppression of $N\pi$ interactions

θ-Term Induced Nucleon EDM

single nucleon EDM:

"controlled"

$$d_n|_{\text{loop}}^{\text{isovector}} = e \frac{g_{\pi NN} g_0^{\theta}}{4\pi^2} \frac{\ln(M_N^2/m_{\pi}^2)}{2M_N} \sim \bar{\theta} m_{\pi}^2 \ln m_{\pi}^2$$

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

$$g_0^{\theta} = \frac{(m_n - m_p)^{\text{strong}} (1 - \epsilon^2)}{4F_{\pi}\epsilon} \bar{\theta} \approx (-0.018 \pm 0.007) \bar{\theta} \quad (\text{where } \epsilon \equiv \frac{m_u - m_d}{m_u + m_d})$$

$$\Rightarrow d_n |_{loop}^{isovector} \sim -(2.1 \pm 0.9) \cdot 10^{-16} \,\overline{\theta} \, \mathrm{e\,cm} \qquad \text{Ottnad et al. (2010); Bsaisou et al. (2013)}$$

θ-Term Induced Nucleon EDM

single nucleon EDM:

"controlled"

$$d_n|_{\text{loop}}^{\text{isovector}} = e \frac{g_{\pi NN} g_0^{\theta}}{4\pi^2} \frac{\ln(M_N^2/m_{\pi}^2)}{2M_N} \sim \bar{\theta} m_{\pi}^2 \ln \theta$$

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

$$g_0^{\theta} = \frac{(m_n - m_p)^{\text{strong}} (1 - \epsilon^2)}{4F_{\pi}\epsilon} \bar{\theta} \approx (-0.018 \pm 0.007) \bar{\theta} \quad (\text{where } \epsilon \equiv \frac{m_u - m_d}{m_u + m_d})$$

 $\hookrightarrow d_n |_{loop}^{isovector} \sim -(2.1 \pm 0.9) \cdot 10^{-16} \,\overline{\theta} \, \mathrm{e\, cm} \qquad \text{Ottnad et al. (2010); Bsaisou et al. (2013)}$

But what about the two "unknown" coefficients of the contact terms?

We'll always have ... the lattice

Andreas Wirzba

Don't mention the ... light nuclei 27140

We'll always have ... the lattice

However, It's a long way to Tipperary ...

Results from full QCD calculations (no systematical errors!) for the

(adapted from Taku Izubuchi (BNL), Lattice-QCD calculations for EDMs, Fermilab, Feb. 14, 2013)

Don't mention the ... light nuclei

We'll always have ... the lattice

However, It's a long way to Tipperary ...

Results from full QCD calculations (no systematical errors!) for the

(adapted from Taku Izubuchi (BNL), Lattice-QCD calculations for EDMs, Fermilab, Feb. 14, 2013)

Don't mention the ... light nuclei

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

EDM of the Deuteron:

Deuteron (D) as Isospin Filter

note: $\underline{} = \frac{ie}{2}(1 + \tau_3)$

2N-system: I + S + L=odd

EDM of the Deuteron at LO: quantitative θ -term results

in units of $g_1^{\theta} e \cdot fm \cdot (g_A m_N / F_{\pi})$

Ref.	potential	no ³ P ₁ -int	with ³ P ₁ -int	total
JBC (2013)*	A <i>v</i> 18	-1.93×10^{-2}	$+0.48 \times 10^{-2}$	-1.45×10^{-2}
JBC (2013)	CD Bonn	-1.95×10^{-2}	$+0.51 \times 10^{-2}$	-1.45×10^{-2}
JBC (2013)*	ChPT (N ² LO) [†]	-1.94×10^{-2}	$+0.65 \times 10^{-2}$	-1.29×10^{-2}
Song (2013)	A <i>v</i> 18	-	-	-1.45×10^{-2}
Liu (2004)	A <i>v</i> ₁₈	-	-	-1.43×10^{-2}
Afnan (2010)	Reid 93	-1.93×10^{-2}	$+0.40 \times 10^{-2}$	-1.43×10^{-2}

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR)

BSM GP sources: LO $g_1 \pi NN$ -vertex also exists in qCEDM and 4qLR cases

EDM of the Deuteron: NLO- and N²LO-Potentials

EDM of the Deuteron: NLO- and N²LO-Potentials

X: vanishing by selection rules, X: sum of diagrams vanishes
 X: vertex correction

31 40

N²LO

EDM of the Deuteron: NLO- and N²LO-Currents

EDM of the Deuteron: NLO- and N²LO-Currents

×: vanishing by selection rules, ×: sum of diagrams vanishes

Deuteron EDM from the $\bar{\theta}$ **-term**

Bsaisou et al. (2013)

total deuteron EDM: $d_D = d_n + d_p + d_D(2N)$

- single-nucleon contribution: EFT *alone* has no predictive power → *Experiment* or *Lattice QCD* needed in addition
- two-nucleon contribution d_D(2N): EFT has predictive power

$$d_D(2N) = \underbrace{-(0.59 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}}_{\text{LO}} + \underbrace{(0.05 \pm 0.02) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}}_{\text{N}^2 \text{LO}}$$

³He EDM: quantitative results for g₀ exchange

 $g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ (CP, I) θ -term, qCEDM \rightarrow LO 4qLR \rightarrow N²LO

units: $g_0(g_A m_N/F_\pi)e$ fm

author	potential	no int.	with int.	total
JBC (2013)*	Av ₁₈ UIX	-0.45×10^{-2}	-0.13×10^{-2}	-0.57×10^{-2}
JBC (2013)*	CD BONN TM	-0.56×10^{-2}	-0.12×10^{-2}	-0.67×10^{-2}
JBC (2013)*	ChPT (<i>N²LO</i>) [†]	-0.56×10^{-2}	-0.19×10^{-2}	-0.76×10^{-2}
Song (2013)	Av ₁₈ UIX	-	-	-0.59×10^{-2}
Stetcu (2008)	Av ₁₈ UIX	-	-	-1.21×10^{-2}

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR)

Results for ${}^{3}H$ also available (not shown)

Note: calculation finally under control !

³He EDM: quantitative results for g₁ exchange

 $\begin{array}{ll} g_1 N^{\dagger} \pi_3 N & (CP, \cline I) \\ \theta \mbox{-term} & \rightarrow & \mbox{NLO} \\ qCEDM, \mbox{4qLR} & \rightarrow & \mbox{LO} \end{tabular} \end{array}$

units: $g_1(g_A m_N/F_{\pi})e$ fm Ref. potential no int. with int. total -0.02×10^{-2} -1.09×10^{-2} -1.11×10^{-2} JBC (2013)* Av18UIX CD BONN TM -1.11×10^{-2} -0.03×10^{-2} -1.14×10^{-2} JBC(2013)* -1.09×10^{-2} -0.14×10^{-2} -0.96×10^{-2} JBC (2013)* ChPT (N²LO)[†] Song (2013) Av18UIX -1.08×10^{-2} -2.20×10^{-2} Stetcu (2008) AV18 UIX --

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR) Results for ³H also available (not shown)

In the pipeline: \mathcal{QP} 3π -vertex contribution (4qLR: LO)

Quantitative EDM results in the θ -term scenario

Single Nucleon (with adjusted signs for consistency; note here e < 0):

$$-d_{1}^{\text{loop}} \equiv \frac{1}{2}(d_{n} - d_{p})^{\text{loop}}$$

= $(2.1 \pm 0.9) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$ (Bsaisou et al. (2013))
$$d_{n} = +(2.9 \pm 0.9) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$$
 (Guo & Meißner (2012))
$$d_{p} = -(1.1 \pm 1.1) \cdot 0^{-16} \,\overline{\theta} \, e \, \text{cm}$$
 (Guo & Meißner (2012))

Deuteron:

$$d_D = d_n + d_p - \left[(0.59 \pm 0.39) - (0.05 \pm 0.02) \right] \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$$

= $d_n + d_p - (0.54 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$ (Bsaisou et al. (2013))

Helium-3:

$$d_{^{3}\!He} = \tilde{d}_{n} + \left[(1.52 \pm 0.60) - (0.46 \pm 0.30) \right] \cdot 10^{-16} \,\bar{\theta} \,e\,\text{cm}$$

= $\tilde{d}_{n} + (1.06 \pm 0.67) \cdot 10^{-16} \,\bar{\theta} \,e\,\text{cm}$ (JBC (2013))
with $\tilde{d}_{n} = 0.88d_{n} - 0.047d_{p}$ (de Vries et al. (2011))

Testing Strategies in the θ EDM scenario

Remember:

$$\begin{array}{rcl} d_D &=& d_n + d_p & - \left(0.54 \pm 0.39\right) \cdot 10^{-16} \, \bar{\theta} \, e \, \text{cm} & (\text{Bsaisou et al. (2013)}) \\ d_{^3\!H\!e} &=& \widetilde{d}_n & + \left(1.06 \pm 0.67\right) \cdot 10^{-16} \, \bar{\theta} \, e \, \text{cm} & (\text{JBC (2013)}) \end{array}$$

Testing strategies:

- plan A: measure d_n , d_p , and $d_D \xrightarrow{d_D(2N)} \overline{\theta} \xrightarrow{\text{test}} d_{^3\!H\!e}$
- plan A': measure d_n , (d_p) , and $d_{^{3}He} \xrightarrow{d_{^{3}He}(2N)} \bar{\theta} \xrightarrow{\text{test}} d_D$
- plan B: measure d_n (or d_p) + Lattice QCD $\sim \bar{\theta} \xrightarrow{\text{test}} d_D$
- plan B': measure d_n (or d_p) + Lattice QCD $\rightsquigarrow \overline{\theta} \xrightarrow{\text{test}} d_p$ (or d_n)

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources: de Vries et al. (2011)

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources: de Vries et al. (2011) 2000 **gEDM** *qCEDM* 4qLRgCEDM + 4qEDM $\rightarrow g_1 \gg g_0$; 3π -coupling (unsuppressed) 2N contribution enhanced!

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources:

de Vries et al. (2011)

here: only absolute values considered

Summary and Outlook

θEDM: relevant low-energy couplings quantifiable

strategy A: measure d_n , d_p , $d_D \xrightarrow{d_D(2N)} \overline{\theta} \xrightarrow{\text{test}} d_{^3He}$ strategy B: measure d_n (or d_p) + Lattice QCD $\sim \overline{\theta} \xrightarrow{\text{test}} d_D$ strategy B': measure d_n (or d_p) + Lattice QCD $\sim \overline{\theta} \xrightarrow{\text{test}} d_p$ (or d_n)

- qEDM, qCEDM, 4QLR:
 - NDA required to asses sizes of low-energy couplings
 - disentanglement possible by measurements of d_n , d_p , $d_D \& d_{^3He}$
- gCEDM, 4quark chiral singlet:

controlled calculation/disentanglement difficult (lattice ?)

Ultimate progress may eventually come from Lattice QCD

 → the QP Nπ couplings g₀ & g₁ may be accessible even for dim-6 → quantifiable d_D (d_{3He}) EFT predictions may be feasible in BSM case

Conclusions

- (Hadronic) EDMs play a key role in probing new sources of GP
- May be relevant for the Baryon Asymmetry of the Universe (BAU)
 However, no theorem which directly links BAU with the EDMs. (Remember *e.g.* the *θ* scenario with EDMs without BAU)
 Moreover, there are no *smoking guns* so far
- Measurements of hadronic EDMs are low-energy measurements
 → Predictions have to be given in the *empirical language of hadrons* → only reliable methods: *ChPT* or *Lattice QCD*
- EDMs of light nuclei provide independent information to nucleon EDMs and may be even larger and even simpler
- Deuteron and helium-3 nuclei serve as isospin filters for EDMs

At least the EDMs of p, n, d, and ³He have to be measured to disentangle the underlying physics

Many thanks to my colleagues

in Jülich: Jan Bsaisou, Christoph Hanhart, Susanna Liebig, Ulf-G. Meißner, Andreas Nogga, and Jordy de Vries

in Bonn: Feng-Kun Guo, Bastian Kubis, Ulf-G. Meißner

and: Werner Bernreuther, Bira van Kolck, Kolya Nikolaev

- J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, A. Nogga and A. Wirzba, *The electric dipole moment of the deuteron from the QCD θ-term,* Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306 [hep-ph]].
- K. Ottnad, B. Kubis, U.-G. Meißner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981 [hep-ph]].
- F.-K. Guo and U.-G. Meißner, Baryon electric dipole moments from strong CP violation, JHEP 1212 (2012) 097 [arXiv:1210.5887 [hep-ph]].
- W. Dekens and J. de Vries, *Renormalization Group Running of Dimension-Six Sources ...,* JHEP 1305 (2013) 149 [arXiv:1303.3156 [hep-ph]].
- J. de Vries, R. Higa, C.-P. Liu, E. Mereghetti, I. Stetcu, R. Timmermans, U. van Kolck, *Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory*, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604 [hep-ph]].

Naive Quark Model results for a nucleon with N_c quarks

A proton (neutron) with isospin $I = \frac{1}{2}$ and spin $J = \frac{1}{2}$ contains $\frac{N_c+1}{2}$ quarks of u(d) flavor and $\frac{N_c-1}{2}$ quarks of d(u) flavor.

Because of spin-flavor symmetry the total spin \vec{J}_{μ} (\vec{J}_{d}) of all u (d) quarks satisfies $J_{\mu} = \frac{N_c+1}{4} (J_d = \frac{N_c-1}{4})$ s.t. $J_z = \pm (J_{\mu} - J_d) = \pm \frac{1}{2}$ and

$$\langle n|\vec{J}_{d}|n\rangle \equiv \langle p|\vec{J}_{u}|p\rangle \equiv \lambda_{u}^{p}\langle p|\vec{J}|p\rangle = \frac{N_{c}+5}{6}\langle p|\vec{J}|p\rangle \xrightarrow{N_{c}=3} \frac{4}{3}\langle p|\vec{J}|p\rangle$$

$$\langle n|\vec{J}_{u}|n\rangle \equiv \langle p|\vec{J}_{d}|p\rangle \equiv \lambda_{d}^{p}\langle p|\vec{J}|p\rangle = -\frac{N_{c}-1}{6}\langle p|\vec{J}|p\rangle \xrightarrow{N_{c}=3} -\frac{1}{3}\langle p|\vec{J}|p\rangle$$

$$\Rightarrow \frac{\mu_{n}}{\mu_{p}} = \frac{\left[\frac{2e}{3}\lambda_{u}^{n} - \frac{e}{3}\lambda_{d}^{n}\right]}{\left[\frac{2e}{3}\lambda_{u}^{p} - \frac{e}{3}\lambda_{d}^{n}\right]} = \frac{\left[\frac{2e}{3}\frac{-1}{3} - \frac{e}{3}\frac{4}{3}\right]}{\left[\frac{2e}{3}\frac{4}{3} - \frac{e}{3}\frac{-1}{3}\right]} = -\frac{2}{3} (!) \left(-\frac{(N_{c}+1)^{2}-4}{(N_{c}+1)^{2}+2} \text{ in general}\right),$$

$$g_{A}^{p} = \lambda_{u}^{p} - \lambda_{d}^{p} = \frac{4}{3} - \frac{-1}{3} = \lambda_{u}^{n} - \lambda_{d}^{n} = g_{A}^{n} = \frac{5}{3} \left(\frac{N_{c}+2}{3} \text{ in general}\right),$$

$$d_{p} = \lambda_{u}^{p}d_{u} + \lambda_{d}^{p}d_{d} = \frac{4}{3}d_{u} - \frac{1}{3}d_{d} \qquad \text{such that} \boxed{d_{p}-d_{n} = \frac{N_{c}+2}{3}(d_{u}-d_{d})}$$

$$d_{n} = \lambda_{u}^{n}d_{u} + \lambda_{d}^{n}d_{d} = -\frac{1}{3}d_{u} + \frac{4}{3}d_{d} \qquad \text{and only} \qquad \boxed{d_{p}+d_{n}=d_{u}+d_{d}} .$$

Andre

What are Effective Field Theories (EFT)?

- Different areas in physics describe phenomena at very disparate scales (of length, time, energy, mass)
- Very intuitive idea: scales much smaller / much bigger than the ones of interest shouldn't matter much
 - *e.g.* masses in particle physics: $m_e \approx 0.511 \text{MeV} \dots m_t \sim 180 \text{ GeV}$ range nearly six orders of magnitude (even without neutrinos)
 - still hydrogen atom spectrum can be calculated very precisely without knowing m_t at all
 - \hookrightarrow Separation of scales: 1/k = $\lambda \gg R_{\text{substructure}}$

EFT example: weak interactions for $E \ll M_W$

Weak decays:

- mediated by the W^{\pm} boson, $M_W \approx 80 \text{ GeV}$
- energy release in neutron decay: ≈ 1 MeV
- energy release in kaon decays: ≈ few 100 MeV

→ Fermi's current-current interaction

Andreas Wirzba

back

Effective Field Theory: Weinberg's conjecture

Quantum Field Theory has no content besides unitarity, analyticity, cluster decomposition and symmetries

To calculated the S-matrix for any theory below some scale, simply use the most general effective Lagrangian consistent with these principles in terms of the appropriate asymptotic states (*i.e.* the general S-matrix can be obtained by perturbation theory using some effective lagrangian from the free theory — Witten (2001))

Power-law expand the amplitudes in *energy(momentum) / scale*.

- Physics at specific energy scale described by relevant d.o.f.
- Unresolved substructure incorporated via low-energy const(s)
- Systematic approach ~> estimate of uncertainty possible

Andreas Wirzba

bac

EFT example: light-by-light scattering

Euler, Heisenberg (1936)

- only one scale: m_e
- consider energies ω << m_e
- $\mathcal{L}_{QED}[\underbrace{\psi, \bar{\psi}}_{matter}, \underbrace{A_{\mu}}_{light}] \rightarrow \mathcal{L}_{eff}[A_{\mu}]$

• invariants: $F_{\mu\nu}F^{\mu\nu} \propto \vec{E}^2 - \vec{B}^2 \& F_{\mu\nu}\tilde{F}^{\mu\nu} \propto \vec{E} \cdot \vec{B}$

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\vec{E}^2 - \vec{B}^2 \right) + \frac{e^4}{16\pi^2 m_e^4} \left[a \left(\vec{E}^2 - \vec{B}^2 \right)^2 + b \left(\vec{E} \cdot \vec{B} \right)^2 \right] + \dots$$

- calculation form the underlying theory, QED, yields 7a = b = 14/45
- energy power law expansion: $(\omega/m_e)^{2n}$
- L_{eff} more efficient than full QED for calculating cross sections etc.

✓ back

The symmetries of QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2} \text{Tr} \left(G_{\mu\nu} G^{\mu\nu} \right) + \sum_{f} \bar{q}_{f} (i \not D - m_{f}) q_{f} + \dots$$

 $D_{\mu} = \partial_{\mu} - igA_{\mu} \equiv \partial_{\mu} - igA_{\mu}^{a} \frac{\lambda^{a}}{2}, \qquad G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}]$

- Lorentz-invariance, P, C, T invariance, SU(3)_c gauge invariance
- The masses of the u, d, s quarks are small: $m_{u,d,s} \ll 1 \text{ GeV} \approx \Lambda_{\text{hadron}}$.
- Chiral decomposition of quark fields:

$$q = \frac{1}{2}(1 - \gamma_5)q + \frac{1}{2}(1 + \gamma_5)q = q_L + q_R.$$

For massless fermions: left-/right-handed fields do not interact

 $\mathcal{L}[\boldsymbol{q}_{L},\boldsymbol{q}_{R}]=i\bar{\boldsymbol{q}}_{L}\mathcal{D}\boldsymbol{q}_{L}+i\bar{\boldsymbol{q}}_{R}\mathcal{D}\boldsymbol{q}_{R}-m\left(\bar{\boldsymbol{q}}_{L}\boldsymbol{q}_{R}+\bar{\boldsymbol{q}}_{R}\boldsymbol{q}_{L}\right)$

and \mathcal{L}_{QCD}^{0} invariant under (global) chiral U(3)_L×U(3)_R transformations: \Rightarrow rewrite U(3)_L×U(3)_R = SU(3)_V×SU(3)_A×U(1)_V×U(1)_A.

- $SU(3)_V = SU(3)_{R+L}$: still conserved for $m_u = m_d = m_s > 0$
- U(1)_V = U(1)_{R+L}: quark or baryon number is conserved
- $U(1)_A = U(1)_{R-L}$: broken by quantum effects ($U(1)_A$ anomaly + instantons)

Hidden Symmetry and Goldstone Bosons

 $[Q_V^a, H] = 0$, and $e^{-iQ_V^a}|0\rangle = |0\rangle \Leftrightarrow Q_V^a|0\rangle = 0$ (Wigner-Weyl realization) $[Q_A^a, H] = 0$, but $e^{-iQ_A^a}|0\rangle \neq |0\rangle \Leftrightarrow Q_A^a|0\rangle \neq 0$ (Nambu-Goldstone realiz.)

• Consequence: $e^{-iQ_A^a}|0\rangle \neq |0\rangle$ is not the vacuum, but

 $H e^{-iQ_A^a}|0\rangle = e^{-iQ_A^a}H|0\rangle = 0$ is a massless state!

Goldstone theorem: continuous global symmetry that does not leave the ground state invariant ('hidden' or 'spontaneously broken' symm.)

- mass- and spinless particles, "Goldstone bosons" (GBs)
- number of GBs = number of broken symmetry generators
- axial generators broken ⇒ GBs should be pseudoscalars
- finite masses via (small) quark masses
 → 8 lightest hadrons: π[±], π⁰, K[±], K⁰, κ
 ⁰, η (not η')
- Goldstone bosons decouple (non-interacting) at vanishing energy

Illustration: spontaneous symmetry breaking (SSB)

Decoupling theorem of Goldstone bosons Goldstone bosons do not interact at zero energy/momentum

- **1** $Q_A^a |0\rangle \neq 0 \Rightarrow Q_A^a \text{ creates GB} \Rightarrow \langle \pi^a | Q_A^a | 0 \rangle \neq 0.$
- 2 Lorentz invariance $\rightsquigarrow \langle \pi^{a}(q) | A^{\mu}_{b}(x) | 0 \rangle = -if_{\pi} q^{\mu} \delta^{a}_{b} e^{iq \cdot x} \neq 0 !$ A^{μ}_{b} axial current
 - $ightarrow f_{\pi} \neq 0$ necessary for SSB (order parameter)

(pion decay constant f_{π} = 92 MeV from weak decay $\pi^+ \rightarrow \mu^+ \nu_{\mu}$)

3 Coupling of axial current A_{μ} to matter fields (and/or pions)

$$i\mathcal{A}^{\mu} = \underbrace{A_{\mu}}_{A_{\mu}} + \underbrace{A_{\mu}}_{A_{\mu}} + \underbrace{I}_{\pi} q^{\mu} \frac{i}{q^2 - m_{\pi}^2 + i\epsilon} i \mathbf{V} \text{ (V: coupling of GB to matter fields)}$$

4 Conservation of axial current $\partial_{\mu}A^{\mu}_{b}(x) = 0$: $\Rightarrow m_{\pi}^{2} = 0$ and $q_{\mu}A^{\mu} = 0$: $0 = q_{\mu}\mathcal{R}^{\mu} - f_{\pi}\frac{q^{2}}{q^{2}}V \xrightarrow{q \to 0} 0 = -f_{\pi}\lim_{q \to 0}V \xrightarrow{f_{\pi} \neq 0} \lim_{q \to 0}V = 0 \Rightarrow \text{decoupling}!$

51 40

θ vacua in strong interaction physics

The topologically non-trivial vacuum structure of QCD

induces winding number n and strong gauge transformation (instanton)

$$\Omega_1:|n\rangle \to |n+1\rangle$$

Naive vacuum therefore unstable (and violates cluster decomposition). Thus true vacuum must be a superposition of the various $|n\rangle$ vacua \sim Theta vacuum:

$$|vac\rangle_{\theta} = \sum_{n=-\infty}^{+\infty} e^{in\theta} |n\rangle$$
 with $\Omega_1 : |vac\rangle_{\theta} \to e^{-i\theta} |vac\rangle_{\theta}$ (phase shift)

Note

$${}_{\theta'}\langle vac|e^{-iHt}|vac\rangle_{\theta} = \delta_{\theta-\theta'} \times {}_{\theta}\langle vac|e^{-iHt}|vac\rangle_{\theta}$$

such that θ unique parameter of strong interaction physics which can be absorbed into the effective Lagrangian

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L} + rac{ heta}{16\pi^2 g^2} \mathrm{Tr}\left(G_{\mu
u}\tilde{G}^{\mu
u}\right)$$
 (back)

θ term

$$\mathcal{L}_{QCD} = \mathcal{L}_{QCD}^{CP} + \theta \frac{g_s^2}{32\pi^2} \tilde{G}_{\mu\nu}^a G^{a,\mu\nu} = \mathcal{L}_{QCD}^{CP} + \theta \frac{g_s^2}{32\pi^2} \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\alpha\beta}$$

• Under $U_A(1)$ rotation of the quark fields $q_f \rightarrow e^{i\alpha\gamma_5/2}q_f \approx (1 + i\frac{1}{2}\alpha\gamma_5)q_f$:

$$\mathcal{L}_{QCD} \rightarrow \mathcal{L}_{QCD}^{CP} - \alpha \sum_{f} m_{f} \bar{q} i \gamma_{5} q + (\theta - N_{f} \alpha) \frac{g_{s}^{2}}{32\pi^{2}} \tilde{G}_{\mu\nu}^{a} G^{a,\mu\nu}$$

$$\Rightarrow \mathcal{L}_{SM}^{\text{str}\,\mathsf{CP}} = \mathcal{L}_{SM}^{\text{CP}} - \bar{\theta}m^* \sum_f \bar{q}_f i\gamma_5 q_f \quad \text{with } \bar{\theta} = \theta + \arg\det\mathcal{M} \text{ and } m^* = \frac{m_u m_d}{m_u + m_d}$$

back

Strong CP problem Peccei-Quinn symmetry and axions

R. Peccei & H. Quinn (1977)

Consider adding a new field ϕ_A , the axion field, to the QCD action

 $\mathcal{L}_{\text{axion}} = \bar{\psi} (\mathcal{M} e^{-i\phi_A/f_A}) \psi + \frac{1}{2} \partial_\mu \phi_A \partial^\mu \phi_A$

- The axion arises as Goldstone boson of the new broken U(1) symmetry of the quark and the Higgs sector.
- Perform further axial U(1) transformation on quark fields to eliminate the GG term entirely

 \Rightarrow new phase of quark mass term: $e^{i(\theta + \arg \det \mathcal{M} - \phi_A/f_A)}$

- Make the trivial U(1) shift φ_A → φ_A + θ + (arg det M)f_A. The kinetic term is invariant under this shift (φ_A massless to LO)
- The axion acquires its mass as $m_A f_A \approx m_\pi f_\pi$ with $f_A \gg v_{weak}$

New Problem: frustrating search for a (light) axion !

Andreas Wirzba

Illustration: spontaneous symmetry breaking (SSB)

EDM Measurements of Neutral Particles

and indirect EDM measurements of charged particles

- Neutron EDM experiments at ILL, SNS, PSI, TRIUMF
 - current $d_n = (0.2 \pm 1.5(\text{stat.}) \pm 0.7(\text{sys.})) \cdot 10^{-26} e \text{ cm}$

Baker et al. [ILL] (2006)

- proposed $\searrow \sim 10^{-28} e \,\mathrm{cm}$
- Diagmagnetic atoms
 - current $d(^{199}\text{Hg} \le 3.1 \cdot 10^{-29} e \text{ cm} (95\% \text{C.L.})$

Griffith et al. [UW] (2009)

inferred $d_p \leq 7.9 \cdot 10^{-25} e \,\mathrm{cm}$

Dmitriev + Sen'kov (2003)

Hudson et al. (2011)

- Ongoing experiments on Ra, Rn, Xe, ...
- Dipolar YbF molecule measurement

• inferred $d_e \leq 1 \cdot 10^{-27} e \,\mathrm{cm}$

56 40

Storage-Ring EDM Measurement of Charged Particles

Thomas–Bargmann-Michel-Telegdi (BMT) equation

Farley et al. (2004)

$$\frac{\mathrm{d}\vec{S}}{\mathrm{d}t} = \vec{S} \times \vec{\Omega}, \qquad \vec{\Omega} = \frac{q}{m} \left[\underbrace{a}_{\mathrm{anom.}}_{\mathrm{magn.}} \vec{B} + \left(\frac{1}{v^2 \gamma^2} - a \right) \vec{v} \times \vec{E} \right] + \frac{1}{S} \underbrace{d}_q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

- Limit on muon EDM: $d_{\mu} \leq 1.8 \cdot 10^{-19} e \text{ cm} (95\% \text{ C.L.})$
- Proposed storage ring exp.s of proton/deuteron EDMs ~ 10⁻²⁹ e cm

Counter-circling proton ring at Brookhaven or Fermilab ?

All-purpose ring $(p, D, {}^{3}He)$ at COSY ?

Non-relativistic reduction of

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -\frac{a_{t}}{2} \bar{f} \sigma^{\mu\nu} f F_{\mu\nu}, \ a_{f} &= \frac{F_{2}(0)}{2m_{f}} \\ &- \int d^{3}x \frac{a_{t}}{2} \bar{\psi}_{f} \sigma^{ij} \psi_{f} F_{ij} + \dots \\ &\rightarrow -\frac{a_{t}}{2} \int d^{3}x \bar{\psi}_{f} \epsilon^{ijk} \begin{pmatrix} \sigma^{k} & 0 \\ 0 & \sigma^{k} \end{pmatrix} \psi_{f} F_{ij} \\ &= -\frac{a_{t}}{2} \int d^{3}x \bar{\psi}_{f} \left(\frac{\sigma^{k} & 0}{0 & \sigma^{k}} \right) \psi_{f} \underbrace{\epsilon^{ijk} F_{ij}}_{-2B^{k}} \\ &\rightarrow a_{t} \int d^{3}x \bar{\psi}_{f} \bar{\sigma} \psi_{f} \cdot \bar{B} \\ &= a_{t} \langle \bar{\sigma} \rangle \cdot \bar{B} \\ &= a_{t} g \langle \bar{S} \rangle \cdot \bar{B}, \ g = 2 \end{aligned}$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= i \frac{d_{t}}{2} \bar{f} \sigma^{\mu\nu} \gamma_{5} f F_{\mu\nu}, \ d_{f} &= \frac{F_{3}(0)}{2m_{f}} \\ \mathcal{H}_{\text{eff}} &= i \frac{d_{t}}{2} \bar{f} \sigma^{\mu\nu} \gamma_{5} f F_{\mu\nu}, \ d_{f} &= \frac{F_{3}(0)}{2m_{f}} \\ &i \int d^{3}x \frac{d_{t}}{\psi} f \sigma^{0i} \gamma_{5} \psi_{f} F_{0i} \times 2 + \dots \\ &\rightarrow i d_{t} \int d^{3}x \bar{\psi}_{i} i \begin{pmatrix} 0 & \sigma_{i} \\ \sigma^{i} & 0 \end{pmatrix} \gamma_{5} \psi_{f} F^{i0} \\ &= i d_{t} \int d^{3}x \bar{\psi}_{i} i \begin{pmatrix} \sigma^{i} & 0 \\ 0 & \sigma^{i} \end{pmatrix} \psi_{f} \underbrace{F^{i0}}_{E^{i}} \\ &\Rightarrow i^{2} d_{t} \int d^{3}x \bar{\psi}_{f} \bar{\sigma} \psi_{f} \cdot \bar{E} \\ &= -d_{t} \langle \bar{\sigma} \rangle \cdot \bar{E} \\ &= -d_{t} \langle \bar{S} \rangle S \cdot \bar{E} \end{aligned}$$

back

Construction of the CKM matrix

Since weak interactions do not respect the global flavor symmetry, there is mixing within the groups of quarks with the same charge:

$$U \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} \rightarrow \tilde{U} = M_U U, \qquad D \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix} \rightarrow \tilde{D} = M_D D,$$

where $M_U \& M_D$ are 3×3 unitary matrices

$$\rightarrow \text{ charged weak current: } J_{\mu} = \overline{\tilde{U}}^{\mu} \gamma_{\mu} (1 - \gamma_5) \widetilde{D}^{\mu} = \overline{U} \gamma_{\mu} (1 - \gamma_5) \underbrace{\mathcal{M}}_{U}^{\dagger} \mathcal{M}_{D} D.$$

- *M* unitary $N_f \times N_f$ matrix for N_f quark families $\sim N_f^2$ real parameters.
- $2N_f 1$ of these can be absorbed by the relative phases of the quark wave functions $\rightarrow (N_f 1)^2$ remaining parameters:

N_f = 2: one remaining real parameter: Cabibbo angle

 $N_f = 3$: O(3) matrix with $\frac{1}{2}3 \cdot (3-1) = 3$ angles plus 1 \mathcal{OP} phase

Lepton case: neutrinos may be Majoranas: → 3 angles plus 3 GP phases

If phase(s) present, *M* complex matrix, whereas CP invariance $\sim M^* = M$! Andreas Wirzba

Transformation Properties of the Form Factor Γ^{μ}

 $A_{\mu}\langle f(p')|J^{\mu}_{em}|f(p)
angle$ = $A_{\mu}\,\overline{u}_{f}(p')\,\Gamma^{\mu}(q^{2})\,u_{f}(p)$ with

$\Gamma^{\mu}(q^2) = \alpha^{\mu} F_{\mu}(q^2) + i \sigma^{\mu}$	$_{\mu\nu} q \frac{F_2(q^2)}{F_2(q^2)} + \sigma^{\mu\nu}$	$\int q \propto \frac{F_3(q^2)}{r_3(q^2)}$
$(q) = (r_1(q) + 10)$	$^{\mathbf{q}_{\nu}}$ $2m_{f}$	9^{ν} 15 $2m_f$
	$+(q q^{\mu}-q^{2}\gamma^{\mu})$	$\gamma_5 F_a(q^2)/m_f^2$

Op.	Р	С	CP	Т	CPT
A_{μ}	${\cal A}^{\mu}$	$-oldsymbol{A}_{\mu}$	$-{\cal A}^{\mu}$	${\cal A}^{\mu}$	$-A_{\mu}$
$\gamma^{m \mu}$	γ_{μ}	$-\gamma^{\mu}$	$-\gamma_{\mu}$	γ_{μ}	$-\gamma^{\mu}$
$\gamma^{\mu}\gamma_{5}$	$-\gamma_{\mu}\gamma_{5}$	$\gamma^{\mu}\gamma_{5}$	$-\gamma_{\mu}\gamma_{5}$	$\gamma_{\mu}\gamma_{5}$	$-\gamma^{\mu}\gamma_{5}$
$\sigma^{\mu u}$	$\sigma_{\mu u}$	$-\sigma^{\mu\nu}$	$-\sigma_{\mu u}$	$-\sigma_{\mu u}$	$\sigma^{\mu u}$
$\sigma^{\mu u} \boldsymbol{q}_{ u}$	$\sigma_{\mu u} q^{ u}$	$-\sigma^{\mu u} q_{ u}$	$-\sigma_{\mu u} q^{ u}$	$-\sigma_{\mu u} q^{ u}$	$\sigma^{\mu u} q_{ u}$
i $\sigma^{\mu u}oldsymbol{q}_{ u}$	i $\sigma_{\mu u}oldsymbol{q}^{ u}$	$-{\rm i}\sigma^{\mu u}m{q}_{ u}$	$-{\sf i}\sigma_{\mu u}oldsymbol{q}^{ u}$	і $\sigma_{\mu u} {oldsymbol q}^ u$	$-i\sigma^{\mu u}q_{ u}$
$\sigma^{\mu u} q_{ u} \gamma_5$	$-\sigma_{\mu u} q^{ u} \gamma_5$	$-\sigma^{\mu u} q_{ u} \gamma_5$	$\sigma_{\mu\nu} q^{\nu} \gamma_5$	$-\sigma_{\mu u} q^{ u} \gamma_5$	$-\sigma^{\mu u} q_{ u} \gamma_5$

For EDMs of charged particles both $F_1(q^2)$ and $F_3(q^2)$ are present at the same time \rightsquigarrow mixing

1 Dispersion for massless fermions in 1+1 D:

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

2

Add electric field

1 Dispersion for massless fermions in 1+1 D:

2

Add electric field

1 Dispersion for massless fermions in 1+1 D:

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

2

Add electric field

1 Dispersion for massless fermions in 1+1 D:

Add electric field

2

1 Dispersion for massless fermions in 1+1 D:

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

3 However, for *infinite mode sums* the level shifts induce a surplace of right-movers:

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

3 However, for *infinite mode sums* the level shifts induce a surplace of right-movers:

$$\dot{Q}_V = \dot{Q}_R + \dot{Q}_L = 0$$

 $\dot{Q}_A = \dot{Q}_R - \dot{Q}_L \neq 0$

(axial charge not conserved)

L back

60 40

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

3 However, for *infinite mode sums* the level shifts induce a surplace of right-movers:

$$\dot{Q}_V = \dot{Q}_R + \dot{Q}_L = 0$$

 $\dot{Q}_A = \dot{Q}_R - \dot{Q}_L \neq 0$

(axial charge not conserved)

L back

60 40

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

3 However, for *infinite mode sums* the level shifts induce a surplace of right-movers:

$$\dot{Q}_V = \dot{Q}_R + \dot{Q}_L = 0$$

 $\dot{Q}_A = \dot{Q}_R - \dot{Q}_L \neq 0$

(axial charge not conserved)

L back

60 40

1 Dispersion for massless fermions in 1+1 D:

2 Add electric field to a single right/left-movers:

Nothing happens to single states, except energy change.

3 However, for *infinite mode sums* the level shifts induce a surplace of right-movers:

$$\dot{Q}_V = \dot{Q}_R + \dot{Q}_L = 0$$

 $\dot{Q}_A = \dot{Q}_R - \dot{Q}_L \neq 0$

(axial charge not conserved)

L back

60 40