Theory of hadronic electric-dipole moments

Ferrara International School Niccolò Cabeo 2013 Physics Beyond the Standard Model: *the Precision Frontier*

May 24, 2013 | Andreas Wirzba

Outline:

- 1 Motivation: Matter–Antimatter Asymmetry in the Universe
- 2 The Permanent EDM and its Features
- 3 CP-Violating Sources in the Standard Model
- 4 CP-Violating Sources *Beyond* the Standard Model
- 5 Electric Dipole Moments of the Nucleon
- 6 Electric Dipole Moments of the Deuteron (and Helium-3)
- 7 Conclusions and Outlook

Motivation: Matter Excess in the Universe

Big Bang Nucleosynthesis (BBN) & Cosmic Microwave Background (CMB)

- 1 End of inflation: $n_B = n_{\bar{B}}$
- 2 BBN: (10 ... 0.1) MeV

3
$$t_{\rm CMB} \sim 3 \times 10^5$$
 y:

SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$

WMAP+COBE (2003) *observation*: $n_B/n_\gamma|_{CMB}=(6.1\pm0.3)10^{-10}$

What is missing?

Motivation: Baryon Asymmetry in the Universe

Nature has probably violated CP when generating the Baryon asymmetry !? **Observed*:** $(n_{\rm B}-n_{\rm B}) / n_{\rm v} = 6 \times 10^{-10}$ SM expectation: $(n_{\rm B} - n_{\rm B}) / n_{\rm v} \sim 10^{-18}$ Sakharov 1967: **B**-violation WMAP + COBE, 2003 C & CP-violation $n_B / n_y = (6.1 \pm 0.3) \times 10^{-10}$ non-equilibrium $(6.19 \pm 0.15) \times 10^{-10}$

[E. Komatsu et al. 2011 ApJS 192]

(adapted from Klaus Kirch (PSI), Fermilab, Feb. 13, 2013)

[JETP Lett. 5 (1967) 24]

Dynamical generation of net baryon number

requires the concurrence of three conditions:

Sakharov Conditions

- 1 baryon number B violationto depart from initial B = 0
- **2** C and CP violationto distinguish B and \overline{B} production
- 3 no thermal equilibrium to escape $\langle B \rangle = 0$ if CPT holds
- Investigation of CP: possible window to physics beyond SM
- Complementary approaches:

high energy collider physics (new particles, EWSB, ...)

high precision low-energy experiments (EDMs, flavor physics)

The Electric Dipole Moment (EDM)

EDM:
$$\vec{d} = \sum_{i} \vec{r}_{i} e_{i} \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / |\vec{S}|$$

(polar)
 $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} - d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
P: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$
T: $\mathcal{H} = -\mu \frac{\vec{S}}{\vec{S}} \cdot \vec{B} + d \frac{\vec{S}}{\vec{S}} \cdot \vec{E}$

Any non-vanishing EDM of some subatomic particle violates P & T

- Assuming CPT to hold, CP is violated as well
- Strongly suppressed in SM (CKM-matrix): $d_n \sim 10^{-31} e \text{ cm}$
- Current bounds: $d_n < 3 \cdot 10^{-26} e \text{ cm}, d_p < 8 \cdot 10^{-25} e \text{ cm}$

n: Baker et al. (2006), p prediction: Dimitriev and Sen'kov (2003)*

* input from Hg atom measurement of Griffith et al. (2009)

A naive estimate of the scale of the nucleon EDM Khriplovich & Lamoreaux (1997)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_p} \sim 10^{-14} e\,{\rm cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

($G_F \cdot m_\pi^2 \sim 10^{-7}$ with $G_F \approx 1.166 \cdot 10^{-5} {\rm GeV}^{-2}$),

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |A(K_L^0 \to \pi^+\pi^-)| / |A(K_S^0 \to \pi^+\pi^-)| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $m_{\pi}^2 G_F$ factor to undo flavor change

$$\rightarrow \quad d_N^{\rm SM} \sim 10^{-7} \times 10^{-24} e \, {\rm cm} \sim 10^{-31} e \, {\rm cm}$$

• $d_N > 10^{-30} e \,\mathrm{cm} \rightarrow GP$ & physics beyond the SM_{KM} observed

Chronology of upper bounds on the neutron EDM

ightarrow 5 to 6 orders above SM predictions which are out of reach !

Theorem: Permanent EDMs of *non*-selfconjugate particles with spin $j \neq 0$

Let $\langle j^{\mathsf{P}} | \vec{d} | j^{\mathsf{P}} \rangle = \mathbf{d} \langle j^{\mathsf{P}} | \vec{J} | j^{\mathsf{P}} \rangle$ with $\vec{d} = \int \vec{r} \rho(\vec{r}) d^3 r$ an EDM operator in a stationary state $|j^{\mathsf{P}} \rangle$ of definite parity P and spin $j \neq 0$, such that

 $\vec{d} \to \mp \vec{d}$ & $\vec{J} \to \pm \vec{J}$ under { space reflection, time reversal.

If $d \neq 0$ and state $|j^{P}\rangle$ has no degeneracy (besides rotational), then $\mathcal{P} \& \mathcal{X}$.

- State |j^P⟩ can be 'elementary' particle (quark, charged lepton, W[±] boson, Dirac neutrino, ...) or a 'composite' neutron, proton, nucleus, atom, molecule
- However, d≠0 not to be confused with huge EDMs of H₂O or NH₃ molecules: ground states of these molecules at non-zero temperatures or strong *E*-fields are mixtures of 2 opposite parity states: the theorem doesn't apply, neither 7 nor P'! Also not to be confused with *induced* EDM (polarization): *quadratic* (E²) vs. linear (E) Stark effect ↔ *induced* vs. permanent EDM
- If the interactions are described by a *local, Lorentz-invariant, hermitian* Lagrangian, then CPT invariance holds: thus *X* ↔ *CP*

* non-selfconjugate particle is not its own antiparticle \Rightarrow at least one "charge" non-zero

 $q^2 = (p' - p)^2$

Permanent EDMs and Form Factors

Here $s = \frac{1}{2}$ fermions (*f* = quark, lepton, nucleon)

• $\langle f(p')|J_{\text{em}}^{\mu}|f(p)\rangle = \bar{u}_f(p')\Gamma^{\mu}(q^2)u_f(p)$

$$\Gamma^{\mu}(q^{2}) = \gamma^{\mu}F_{1}(q^{2}) - i\sigma^{\mu\nu}q_{\nu}\frac{F_{2}(q^{2})}{2m_{f}} + \sigma^{\mu\nu}q_{\nu}\gamma_{5}\frac{F_{3}(q^{2})}{2m_{f}} + (\oint q^{\mu} - q^{2}\gamma^{\mu})\gamma_{5}F_{a}(q^{2})/m_{f}^{2}$$

(Dirac $F_1(q^2)$, Pauli $F_2(q^2)$, electric dipole $F_3(q^2)$, and anapole $F_a(q^2)$ FFs)

- Quark, lepton or nucleon EDM $d_f := F_{3,f}(0)/(2m_f)$ $\mathcal{H}_{eff} = i \frac{d_f}{2} \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu} \longrightarrow -d_f \sigma \cdot \mathbf{E} \longrightarrow linear \text{Stark effect}$
- Likewise chromo quark EDM with *SP* gluon-quark-quark vertex:

$$i \frac{d_{cq}}{2} \bar{q} \sigma^{\mu\nu} \gamma_5 T^a G^a_{\mu\nu} q$$

or weak dipole moment (WDM) with Z-boson *f*-*f* vertex: $i \frac{d_f^2}{2} \bar{f} \sigma^{\mu\nu} \gamma_5 f Z_{\mu\nu}$.

Generic features of EDM, chromo EDM or WDM

$$\mathcal{L}_{\mathsf{EDM}} = -\mathsf{i}\frac{d_f}{2}\,\overline{f}\sigma_{\mu\nu}\gamma_5 f\,F^{\mu\nu} = -\mathsf{i}\frac{d_f}{2}\,\overline{f}_{\mathsf{L}}\,\sigma_{\mu\nu}f_{\mathsf{R}}\,F^{\mu\nu} + \mathsf{i}\frac{d_f}{2}\,\overline{f}_{\mathsf{R}}\,\sigma_{\mu\nu}f_{\mathsf{L}}\,F^{\mu\nu}$$

- Sum of the mass dimension of these fields: $\frac{3}{2} + \frac{3}{2} + 2 = 5$, $\Rightarrow \dim(d_f) = e \times \text{length} = e \times \text{mass}^{-1}$ (such that $\int d^4x \, \mathcal{L} \sim \text{mass}^0$)
 - → non-renormalizable effective interaction
- 2 For any non-zero EDM (or WDM), \mathcal{CP} is flavor *diagonal*! Note that \mathcal{CP} in SM model (via CKM matrix) is flavor *changing*. \rightarrow extra $\sim 10^{-7}$ factor multiplies naive estimate $d_n \simeq 10^{-24} e$ cm.
- 3 Chirality in \mathcal{L}_{EDM} flipped: $\frac{1}{2}(\mathbf{1} \gamma_5)f = f_L \leftrightarrow f_R = \frac{1}{2}(\mathbf{1} + \gamma_5)f$ \Rightarrow fermion mass m_f insertion (e.g. via Higgs mechanism) needed: $d_f \propto m_f^n$, n = 1, 2, 3 (depending on the model of \mathcal{QP}) $\Rightarrow \mathcal{QP}$ beyond SM: $\mathcal{L}_{BSM}^{\mathcal{QP}} = \frac{1}{M_{TVOI}} \mathcal{L}_{dim 5} + \frac{1}{M_{2VOI}^2} \mathcal{L}_{dim 6} + \dots$

CP violation in the Standard Model

The conventional source: Kobayashi-Maskawa mechanism

Empirical facts: 3 generations of u/d quarks (& e/ν leptons)

- $0 < m_u < m_d < m_s < m_c < m_b < m_t$ and $m_e < m_\mu < m_\tau$
- quarks & leptons in mass basis ≠ quarks & leptons in weak-int. basis
- $\textbf{L}_{SM} = \mathcal{L}_{gauge} + \mathcal{L}_{gauge-fermion} + \mathcal{L}_{gauge-Higgs} + \mathcal{L}_{Higgs-fermion} \quad \text{is CP inv.},$
 - with the exception of the θ term of QCD (see later)

and the charged-weak-current interaction ($\subset \mathcal{L}_{gauge-fermion}$)

$$\mathcal{L}_{c-w-c} = -\frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{d}_{Li} \gamma^{\mu} \, \mathbf{V}_{ij} \, u_{Lj} \, \mathbf{W}_{\mu}^{-} - \frac{g_w}{\sqrt{2}} \sum_{ij=1}^{3} \bar{\ell}_{Li} \gamma^{\mu} \, \mathbf{U}_{ij} \, \nu_{Lj} \, \mathbf{W}_{\mu}^{-} + \text{h.c.}$$

 V: 3 × 3 unitary quark-mixing matrix (Cabibbo-Kobayashi-Maskawa m.)
 3 angles + 1 C^ρ phase δ_{KM} U: 3 × 3 unitary lepton-mixing matrix (Maki-Nakagawa-Sakata matrix)

3 angles +1(3) \mathcal{OP} phase(s) for Dirac (Majorana) ν_i 's

EDMs in the SM: unconventional θ -term mechanism

The topologically non-trivial vacuum structure of QCD

induces a direct \mathbb{P} & $\mathbb{T} \sim \mathbb{P}$ interaction with a new parameter θ :

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

- Anomalous U_A(1) quark-rotations induce mixing with 'mass' term $\theta \frac{g_s^2}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} \xrightarrow{U_A(1)} -\bar{\theta} m_q^* \sum_f \bar{q} i \gamma_5 q_f \quad (m_q^* = \frac{m_u m_d}{m_u + m_d} \text{ reduced mass})$ $\Rightarrow unknown \text{ coupling constant is actually } \overline{\theta} = \theta + \text{ arg Det } \mathcal{M}_{\text{quark}}$
- Naive dim. analysis (NDA) estimate of θ
 -induced neutron EDM is

$$d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{m_N} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \,\mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \,\mathrm{cm} \quad \text{with } \bar{\theta} \sim \mathcal{O}(1).$$

But $|\bar{\theta}| < 10^{-10}$ from upper bound $d_n^{emp} < 2.9 \cdot 10^{-26} e \, \text{cm}$ (Baker et al. (2006))

How to handle unknown physics beyond SM?

e.g. SUSY, multi-Higgs, Left-Right Symmetric Models, ...

Roughly two methods

- Pick specific models (or rather classes of models)
 - extensive literature (now motivated by LHC constraints)
 - methods: (constituent) quark model estimates, Russian sum rules, lattice calculations, etc.
 (W. Marciano's talk)
- Application of Effective Field Theories (EFT), e.g.

- Write down *all* interactions among the relevant degrees of freedom (with masses *M* < particular scale)
- Interactions need to obey the relevant symmetries of the theory
- Need a power-counting scheme to order the infinite # interactions

CP-violating sources beyond the SM (BSM)

Idea: BSM physics and also SM treated as effective field theories

- All degrees of freedom beyond a specified scale are integrated out:

 →remaining theory contains relevant degrees o.f. and non-relevant contact terms governed by symmetry: Lorentz + SM symmetries
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECS) of the CP-violating contact terms, e.g.

CP-violating sources beyond SM

Removal of the Higgs and transition to hadronic fields

Add to SM all possible T- and P-odd contact interactions

Finding the Sources of EDMs

(adapted from Jordy de Vries, Jülich, March 14, 2013)

Relevant 7 & P quark sources up to dimension 6

W. Dekens & J. de Vries (2013)

⁽adapted from Jordy de Vries, Jülich, March 14, 2013)

Total # =
$$1(\overline{\theta}) + 2(qEDM) + 2(qCEDM) + 1(gCEDM) + 1(FQLR) + 2(4q) [+3(semi-lept)]$$

= $1(dim-four) + 8[+3](dim-six)$

Caveat: implicit assumption that $m_s \gg m_u, m_d$

EDM-Translator from "quarkish" to "hadronic" language?

EDM-Translator from "quarkish" to "hadronic" language?

Symmetries, esp. Chiral Symmetry and Goldstone Theorem Low-Energy Effective Field Theory with External Sources *i.e.* Chiral Pertubation Theory (suitably extended)

Andreas Wirzba

 \rightarrow

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

 $ightarrow ar{ heta}$ source breaks chiral symmetry ($\propto m^*$) but conserves the isospin one

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- chromo quark EDM: chiral & isospin symmetries are broken because of quark masses → Goldstone theorem respected
- 4quark Left-Right EDM: explicit breaking of chiral & isospin symmetries because of underlying W boson exchange ~ Goldstone theorem does not apply

Hierachy among the sources at the hadronic EFT level

Each source transforms differently under chiral and isospin symmetry

- quark EDM: $N\pi$ (and NN) interactions are suppressed by $\alpha_{em}/(4\pi)$
- gluon color EDM (and chiral-4quark EDM): relative O(m²_π) suppression of Nπ interactions because of Goldstone theorem

θ-Term Induced Nucleon EDM

single nucleon EDM:

"controlled"

$$d_n|_{\text{loop}}^{\text{isovector}} = e \frac{g_{\pi NN} g_0^{\theta}}{4\pi^2} \frac{\ln(M_N^2/m_{\pi}^2)}{2M_N} \sim \bar{\theta} m_{\pi}^2 \ln m_{\pi}^2$$

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

$$g_0^{\theta} = \frac{(m_n - m_p)^{\text{strong}} (1 - \epsilon^2)}{4F_{\pi}\epsilon} \bar{\theta} \approx (-0.018 \pm 0.007) \bar{\theta} \quad (\text{where } \epsilon \equiv \frac{m_u - m_d}{m_u + m_d})$$

$$\Rightarrow d_n |_{loop}^{isovector} \sim (2.1 \pm 0.9) \cdot 10^{-16} \,\theta \, \mathrm{e\,cm} \qquad \text{Ottnad et al. (2010); Bsaisou et al. (2013)}$$

θ-Term Induced Nucleon EDM

single nucleon EDM:

"controlled"

 $\Rightarrow d_n |_{\text{loop}}^{\text{isovector}} \sim (2.1 \pm 0.9) \cdot 10^{-16} \theta \, \text{e cm}$ Ottnad et al. (2010): Bsaisou et al. (2013)

But what about the two unknown coefficients of the contact terms?

We'll always have ... the lattice

We'll always have ... the lattice

However, It's a long way to Tipperary ...

(adapted from Taku Izubuchi (BNL), Lattice-QCD calculations for EDMs, Fermilab, Feb. 14, 2013)

We'll always have ... the lattice

However, It's a long way to Tipperary ...

(adapted from Taku Izubuchi (BNL), Lattice-QCD calculations for EDMs, Fermilab, Feb. 14, 2013)

Don't mention the ... light nuclei

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

EDM of the Deuteron:

Deuteron as Isospin Filter

note: $\leq \frac{ie}{2}(1+\tau_3)$

total current

 $I=0 \qquad \qquad I=0$

2N-system: I + S + L = odd

 $I=0 \rightarrow I=1 \rightarrow I=0$ I=0 I=0

isospin selection rules!

irred. potential

 $g_0^{\theta} N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ at leading order (LO)

subleading (NLO) $g_1^{\theta} N^{\dagger} \pi_3 N$ acts as '*new*' leading order (LO)

Deuteron EDM from the $\bar{\theta}$ **-term**

total deuteron EDM d_D :

 $d_D = d_n + d_p + d_D(2N)$

- single-nucleon contribution: EFT has no predictive power → experiment or lattice QCD needed
- two-nucleon contribution d_D(2N): EFT has predictive power

 $d_D(2N) = -(0.59 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm} + \underbrace{(0.05 \pm 0.02) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}}_{\text{N}^2 \text{LO}}$

• helium-3: first results promising: $|d_{3He}| > |d_n|$

de Vries et al. (2011); Song et al. (2012); Bsaisou et al. (in prep.)

testing procedures:

- strategy 1: measure d_n (or d_p) + Lattice-QCD $\rightarrow \bar{\theta} \xrightarrow{\text{test}} d_D$
- strategy 2: measure $d_n, d_p, d_D \xrightarrow{d_D(2N)} \overline{\theta} \xrightarrow{\text{test}} d_{^3He}$

Andreas Wirzba

Bsaisou et al. (2013)

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources: de Vries et al. (2011) 000 qEDM *qCEDM* 4qLRgCEDM + 4qEDM $g_0, g_1 \propto \alpha/(4\pi)$ 2N contribution suppressed by photon loop!

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources: de Vries et al. (2011)

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources: de Vries et al. (2011) 2000 **gEDM** *qCEDM* 4qLRgCEDM + 4qEDM $\rightarrow g_1 \gg g_0$; 3π -coupling (unsuppressed) 2N contribution enhanced!

here: only absolute values considered

If $\bar{\theta}$ -term tests fail: effective BSM dim. 6 sources:

de Vries et al. (2011)

here: only absolute values considered

Summary and Outlook

- θEDM: relevant low-energy couplings quantifiable
 - strategy 1: measure d_n (or d_p) + Lattice-QCD $\sim \bar{\theta} \xrightarrow{\text{test}} d_D/d_{^3\text{He}}$
 - strategy 2: measure d_n , $d_p \& d_D \xrightarrow{d_D(2N)} \bar{\theta} \xrightarrow{\text{test}} d_{^3He}$
- qEDM, qCEDM, 4QLR:
 - NDA required to asses sizes of low-energy couplings
 - disentanglement possible by measurements of d_n , d_p , d_D and $d_{^3He}$
- gCEDM, 4quark chiral singlet:

controlled calculation/disentanglement difficult (lattice ?)

- Lattice might directly determine $\mathcal{QP} N\pi$ coupling constants g_0 and g_1 , even for dimension-6 sources, which then can be used in d_D and $d_{^{3}\!He}$ EFT calculations
- next step: full calculation of d_{3He}

Conclusions

- (Hadronic) EDMs play a key role in probing new sources of GP
- May be relevant for the baryon asymmetry of the universe (BAU) However, no theorem which directly links BAU with the EDMs. Moreover, no *smoking guns* exist so far
- EDMs of light nuclei provide independent information to nucleon EDMs and may be even larger & simpler
- Deuteron and helium-3 nuclei serve as isospin filters for EDMs

At least the EDMs of p, n, d, and ³He EDMs have to be measured to disentangle the underlying physics

Many thanks to my colleagues

in Jülich: Jan Bsaisou, Christoph Hanhart, Susanna Liebig, Ulf-G. Meißner, Andreas Nogga, and Jordy de Vries

in Bonn: Feng-Kun Guo, Bastian Kubis, Ulf-G. Meißner

and: Werner Bernreuther, Bira van Kolck, Kolya Nikolaev

- J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, A. Nogga and A. Wirzba, *The electric dipole moment of the deuteron from the QCD θ-term,* Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306 [hep-ph]].
- K. Ottnad, B. Kubis, U.-G. Meißner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981 [hep-ph]].
- F.-K. Guo and U.-G. Meißner, Baryon electric dipole moments from strong CP violation, JHEP 1212 (2012) 097 [arXiv:1210.5887 [hep-ph]].
- W. Dekens and J. de Vries, *Renormalization Group Running of Dimension-Six Sources ...,* arXiv:1303.3156 [hep-ph].
- J. de Vries, R. Higa, C.-P. Liu, E. Mereghetti, I. Stetcu, R. Timmermans, U. van Kolck, *Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory*, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604 [hep-ph]].