

Perspectives for Storage Ring EDM Searches

October 2, 2012 | Andreas Lehrach

on behalf of the JEDI collaboration (Jülich Electric Dipole Moment Investigations)

Outline

Introduction

EDM Measurements in Storage Rings

COSY as EDM Injector Dedicated Storage Rings First Direct Measurement at COSY

Simulation Programs

Computational Needs Performance and Benchmarking

Summary/Outlook

EDM searches - only upper limits up to now (in e.cm):

Particle/Atom	Current EDM Limit	Future Goal	
Neutron	< 3 ×10 ⁻²⁶	~10 ⁻²⁸	
¹⁹⁹ Hg	< 3.1 ×10 ⁻²⁹	~10 ⁻²⁹	
¹²⁹ Xe	< 6 ×10 ⁻²⁷	~10 ⁻³⁰ – 10 ⁻³³	
Proton	< 7.9 ×10 ⁻²⁵	~10 ⁻²⁹	
Deuteron	?	~10 ⁻²⁹	

Huge efforts underway to improve limits / find EDMs

CP can have different sources

It is important to measure neutron **and proton and deuteron**, and light nuclei EDMs in order to disentangle various sources of CP violation

Thomas-BMT Equation

Equation for spin motion of relativistic particles in storage rings for $\vec{\beta} \cdot \vec{B} = \vec{\beta} \cdot \vec{E} = 0$.

The spin precession relative to the momentum direction is given by:

October 2, 2012 | A. Lehrach

Storage ring EDM searches

Search for Electric Dipole Moments

NEW approach: EDM search in time development of spin in a storage ring:

A magic storage ring for protons (electrostatic), deuterons, ...

particle	p (GeV/c)	E (MV/m)	B (T)	
proton	0.701	16.789	0.000	
deuteron	1.000	-3.983	0.160	One machine
³ He	1.285	17.158	-0.051	with r ~ 30 m

Systematic error due to vertical electric fields and horizontal magnetic fields

Cooler Synchrotron COSY

COSY Beam Parameter

- Beam intensity (polarized beams): 10¹⁰ protons or deuterons
- Beam polarization (1 GeV/c):
 0.8 of maximum possible value
- Transverse emittances:
 - 15-30 π mmm mrad (geom., 3σ uncooled at injection) below 3 π mm mrad (geom., 3σ cooled at injection)
- Momentum spread:

 $(\Delta p/p)_{rms}$

< 10⁻³ (uncooled) << 10⁻⁴ (cooled)

New 2 MV Electron Cooler at COSY

- Energy Range: 0.025 ... 2 MeV
- High Voltage Stability: < 10⁻⁴
- Electron Current: 0.1 ... 3 A
- Electron Beam Diameter: 10 ... 30 mm
- Cooling section length: 2.694 m
- Magnetic field (cooling section): 0.5 ... 2 kG

Installation at COSY in the winter shutdown 2012/13

October 2, 2012 | A. Lehrach

Siberian Snakes

transverse fields (helical dipoles) at higher energies

Full Siberian snake for 1 GeV/c: 3.75 Tm (protons), 12.24 Tm (Deuterons)

Superconducting 4.7 Tm solenoid is ordered. Overall length: 1 m Ramping time 30 s

Installation at COSY in spring 2013

Deuteron EDM Proposal

Deuteron momentum: p = 1 GeV/c, Ring parameter: $R_B = 8.4$ m, $\langle R \rangle \sim 10$ m, C = 85m Deflectors: $E_R = -12$ MV/m (radial), $B_V = 0.48$ T (vertical)

 2004 BNL proposal: single ring CW and CCW consecutive beam injections Limiting error: time-dependent part of the average vertical electric field over the entire ring → sensitivity ~ 10⁻²⁷ e · cm for one year measurement

See http://www.bnl.gov/edm

Jülich All-In-One Ring Lattice

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

All-In-One Storage Ring Lattice for Baryon EDM Measurements February, 2012

Richard Talman, Cornell University, Ithaca, N.Y.

February 13, 2012

Jülich All-In-One Ring Lattice

October 2, 2012 | A. Lehrach

R&D Activity	Goal	Test
Internal Polarimeter	spin as a function of time Systematic errors < 1 ppm	EDM at COSY
	Full-scale polarimeter	EDM at COSY
Spin Coherence Time	>10 ³ s	EDM at COSY
Beam Position Monitor	resolution 10 nm,1 Hz BW 64 BPMs, 10^7 s measurement time \rightarrow 1 pm (stat.) relative position (CW-CCW)	BNL RHIC IP
E/B-field Deflector	17 MV/m 2 cm plate separation, 0.15-0.5T	Jülich

October 2, 2012 | A. Lehrach

Spin Manipulation at COSY

RF-induced spin resonance:

$$f_r = f_c (k \pm \gamma G)$$

horizontal RF-B Fields

RF Dipole (dismantled)

- 8-turn water-cooled copper coil in a ferrite box
- Length 0.6 m
- Frequency range roughly 0.4 to 1.2 MHz
- Integrated field $\int B_{rms} dl \sim 0.54 \text{ T} \cdot \text{mm}$

RF Solenoid

- Water-cooled copper coil in a ferrite box,
- Length 0.6 m
- Frequency range roughly 0.6 to 1.2 MHz
- Integrated field $\int B_{rms} dl \sim 1 \text{ T} \cdot \text{mm}$

October 2, 2012 | A. Lehrach

Resonance Strengh

Resonance Method with RF E/B Fields

First direct measurement in COSY developed by the Jülich study group RF-E/B spin flipper to observe a spin rotation by the EDM

Two possibilities:

- 1. $B^*=0 \implies B_Y = \beta \times E_R (\sim 70 \text{ G for } E_R = 30 \text{ kV/cm})$
- 2. $E^*=0 \implies E_R = -\beta \times B_Y$ "Magic RF Wienfilter"

"Direct" EDM effect No-Lorenz Force, "Indirect" EDM effect

Tilt of the precession plane due to EDM

Observable:

Accumulation of spin rotations within spin coherence time

- EDM signal is **increased** during the cycle
- Statistical sensitivity for d_d in the 10⁻²³ to 10⁻²⁴ e·cm range possible
- Alignment and field stability of ring magnets
- Imperfection of RF E(B) spin flipper?

Talk by F. Rathmann

Two steps to develop a RF E/B Spin Flipper

Low-power device:
 E-Field : << 1 MV/m, B-Field ~ 7 Gauss

2) High-power device: E-Field : >> 1 MV/m, B-Field ~ 70 Gauss

Two resonance circuits with common master clock Length ~1m Frequency 0.3-1 MHz In vacuum ~10^{~9} mbar

or microwave structure (strip line)

R&D Program JEDI (Jülich Electric Dipole Moment Investigations)

- 1. Studies of the spin coherence time (SCT) with horizontal/vertical RF-B/E spin flipper
- Different wave forms at different spin harmonics and beam energies
- Goal is to get optimum setting of the RF-B field for maximum spin coherence time
- 2. Investigation of systematic effect with vertical/horizontal RF-B/E spin flipper
- Alignment and field quality RF-B flipper
- Opening angle of spin ensemble (beam cooling and heating)
- Alignment of the ring magnets
- 3. Development and benchmark precision simulation programs for spin dynamics in storage ring
- COSY-Infinity, integrating code, simple code
- 4. Polarimetry

5. Development of a high-power RF-E(B) spin flipper

October 2, 2012 | A. Lehrach

Spin Coherence Time with RF Flipper

Exciting result of the Jülich Study Group

Beam energy (MeV)

 Possibility to increase spin coherence time by 3 to 5 orders of magnitude in the ideal case

October 2, 2012 | A. Lehrach

Spin coherence time (s)

Storage ring EDM searches

 $f_r = f_c (k \pm \gamma G)$

COSY Upgrade

Improved closed-orbit control system for orbit correction in the micrometer range
 → Increasing the stability of correction-dipole power supplies
 → Increase number of correction dipoles and beam-position monitors (BPMs)
 → Improve BPM accuracy, limited by electronic offset and amplifier linearity
 → Systematic errors of the orbit measurement (e.g., temperature drift)

2. Alignment of Magnets and BPMs

- \rightarrow More precise alignment of the quadrupole and sextupole magnets
- \rightarrow BPMs have to be aligned with respect to the magnetic axis of these magnets

3. Beam oscillations

- \rightarrow Excited by vibrations of magnetic fields induced by the jitter of power supplies
- → Coherent beam oscillation

4. Longitudinal and transverse wake fields

→ Ring impedances

Stepwise Approach of the JEDI Project

Step	Aim / scientific goal	Device / Tools	Storage ring
1	Spin coherence time studies	Horizontal/vertical RF-B/E spin flipper	COSY
	Systematic error studies	Vertical/horizontal RF-B/E spin flipper	COSY
2	COSY upgrade	Orbit control, magnets,	COSY
	First direct EDM measurement at 10 ⁻²⁴ e-cm	High-power RF-E/B spin flipper	Modified COSY
3	Built a dedicated all-in-one ring for p, d, ³ He	Common magnetic- electrostatic deflectors R&D funded by ARD (Accelerator Research and Development) of HGF	Dedicated ring
4	EDM measurement for p, d, ³ He at 10 ⁻²⁹ e-cm		Dedicated ring

Time scale

Step 1-2: > five years Step 3-4: > five years

Computational Needs

- Particle revolutions: >>10⁶ turns (1 seconds)
 → efficient simulation program
- Number of particle: 10⁶
 - \rightarrow MPI version on a supercomputer
- Precision:
 - COSY measurement: 10⁻¹³–10⁻¹² radians per turn
 - Dedicated ring: EDM rotation with by of 10^{-15} radians per turn \rightarrow roughly 10^{-18} radians per element
 - → double precision (64 Bit) provides16 significant decimal digits precision
- EDM spin kick is required
- RF E/B spin flipper element is needed

Utilized Simulation Programs

COSY Infinity:

- based on map generation using differential algebra and the subsequent calculation of the spin-orbital motion for an arbitrary particle
- including higher-order nonlinearities, normal form analysis, and symplectic tracking
- the upgrade of COSY Infinity is supervised by M. Berz
- an MPI version of COSY Infinity is already running on the computer cluster at Michigan State University
- a project for the Jülich supercomputer is starting end of this year

Talk by M. Berz

Code Performance

October 2, 2012 | A. Lehrach

Benchmarking

Integrating program:

 differential equations of particle and spin motion in electric and magnetic fields are solved using Runge-Kutta integration (integration step size 0.5 ps → maximum tracking 10 ms)

Numerical integration:

 numerical integration of the Thomas-BMT differential equations for a spin motion with smoothly approximated parameters of orbital motion

Rotation matrices:

Talk by Y. Senichev

 matrices for dipoles and RF Spin flipper including synchrotron oscillation

Experiments:

"analog computer" Cooler Synchotron COSY

Conclusion / Outlook

EDM Measurement: Stepwise approach of the JEDI Project

- R&D work at COSY together with BNL
- Upgrade and first direct measurement at COSY
- Upgrade COSY as EDM injector
- Build a dedicated storage ring

Computational Needs

- Efficient simulation program on a super computer
- Benchmarking with other simulation programs and COSY experiments