

Development of a Rogowski coil as a new Beam Position Monitor (BPM)

Horizontal and Vertical Rogowski BPM

Fabian Trinkel for the JEDI collaboration Eucard Workshop Mainz 2015

Content

- Introduction
- Theory for positon determination with a Rogowski coil as BPM
- Technical approach
- First measurements with a Rogowski coil as horizontal BPM
- Summary and outlook

Introduction Existence of an EDM violates CP-theor

Existence of an EDM violates CP-theorem, which is necessary to explain the matter over antimatter dominance in the Universe

Aim of Jülich Electric Dipole moment Investigations collaboration:

Measure the EDM of charged hadrons for protons p and deuterons d

$$\mathcal{H} = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d \frac{\vec{s}}{s} \cdot \vec{E}$$
$$\mathbf{P:} \qquad \mathcal{H} = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d \frac{\vec{s}}{s} \cdot \vec{E}$$
$$\mathbf{T:} \qquad \mathcal{H} = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d \frac{\vec{s}}{s} \cdot \vec{E}$$

Standard Model EDM prediction: 10^{-32} to 10^{-31} ecm

EDM measurements in storage rings

General idea:

- Inject polarised particles with spin pointing towards the momentum direction
- "Frozen Spin"-Technique: without EDM spin stays aligned to momentum
- EDM couples to electric bending fields
- EDM leads to a polarization build-up in vertical direction

Challenge:

Control of the Orbit with a very high accuracy to prevent systematic effects

Cooler Synchrotron COSY in Jülich

Beam Position Monitor (BPM)

BPM measures transverse beam positon (x_0, y_0)

Electrostatic BPM (Standard at COSY):

Magnetostatic BPM (New Development):

Excellent response to an RF signal

Accuracy of the existing COSY BPM system $\approx 0.1 \mbox{ mm}$ Not enough for an EDM measurement

More precise position measurement with Rogowski BPM System and a first step to a SQUID-based BPM development

Rogowski Coil

Pickup-Coil to measure the magnetic flux:

Standard application to measure AC currents

Torus with:

- Major radius R = 40 mm
- Minor radius a = 5 mm
- Winding with copper wire N = 1400
- Divided into
 - One segment (BCT)
 - Two segments (BPM in one dimension)
 - Four segments (BPM in two dimensions)

nholtz-Gemeinschaft

Induced Voltage

$$U_{ind} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A} = -\frac{d}{dt} \iiint B_{\varphi} dr dz R d\varphi$$

Taylor of B_{φ} to $\mathcal{O}(r_0^2/R^2)$ leads to:

$$U_{ind,1/1} = \frac{dI_0}{dt} N\mu_0 \left[R - \sqrt{R^2 - a^2} \right]$$

Beam Current Transformator +

$$U_{ind,1/2} = \frac{dI_0}{dt} \frac{N}{2} \mu_0 \left[R - \sqrt{R^2 - a^2} \right] \left[1 - \frac{2}{\pi \sqrt{R^2 - a^2}} x_0 \right]$$
$$U_{ind,1/4} = \frac{dI_0}{dt} \frac{N}{4} \mu_0 \left[R - \sqrt{R^2 - a^2} \right] \left[1 - \frac{2\sqrt{2}}{\pi \sqrt{R^2 - a^2}} x_0 - \frac{r_0^2 \sin(2\Psi - 2\varphi) a^2}{\pi (R^2 - a^2)^{3/2} \cdot (R - \sqrt{R^2 - a^2})} \right]$$

22. September 2015

15 * "Mutual inductances comparison in Rogowski coil with circular and rectangular cross-sections 9 and its improvement" http://dx.doi.org/10.1109/ICIEA.2008.4582770

Position Dependency Prediction of a halved Rogowski Coil

Rogowski coil measures the flux density change A voltage is induced and the beam position can be determined by:

$$x \propto \frac{U_{Ind,left} - U_{Ind,right}}{U_{Ind,left} + U_{Ind,right}}$$

Theoretical prediction for position dependency of a halved coil as a horizontal BPM should be independent of the vertical beam position and the other way round

Mitglied der Helmholtz-Gemeinschaft

Technical Approach

1. Step: Development of a coil with two segments (BPM in one dimension)

2. Step: Development of a coil with four segments (BPM in horizontal and vertical direction)

Installation of two Rogowski coils as horizontal and vertical BPMs at COSY

LICH

Technical Approach

3. Step: Characterise the horizontal Rogowski BPM and the horizontal and vertical Rogowski BPM in the laboratory

horizontal Rogowski BPM

horizontal & vertical Rogowski BPM

4. Step: Development of a nitrogen or liquid helium cooled coil with four segments (BPM in vertical and horizontal dimension)

5. Step: Development of a SQUID-BPM test bench

22 September 2015

Rogowski BPM for RF Wien Filter

- No COSY BPM next to it
- Installation of Rogowski Coil BPMs at both ends
 - Position beam in center and parallel to Wien Filter

E- and B- Field region

Measurement Setup

- Unpolarised, bunched deuteron beam (N ${\sim}10^9$),
- Momentum 970 MeV/c, revolution frequency 750 kHz
 - Horizontal or vertical orbit bump after 33 seconds

•

•

Measurement horizontal Displacement

- Measurement of the induced voltages every 4.45 ms for each part of the Rogowski coil
- Create different horizontal orbit bumps with two correctors
- Calculate the displacement as difference of the reference orbit and the orbit bump

Mitglied der Helmholtz-Gemeinschaft

Analyse Procedure

- Define an interval of 1000 data points (4.45s) for the reference orbit (1. Interval) and the orbit bump (2. Interval)
- Calculate the Δ displacement for each measurement

Analyse Procedure

mholtz-Gemeir

Mitglied der Hel

Beam oscillation or mechanical vibrations? JÜLICH

tglied der Helmholtz-Gemeinschaft

Displacement variation from cycle to cycle JÜLICH

Determine the variation of the displacement from cycle to cycle with constant magnet settings

Varying Horizontal Corrector Strength

Theoretical expectation is consistent with the horizontal orbit measurmenet at the accelerator

Measurement horizontal beam displacement in denpendency of a vertical orbit bump

Changing the vertical orbit position with two vertical correctors

Measurement of the horizontal beam position

Time

Mitglied der Helmholtz-Gemeinschaft

Horizontal orbit measurement with vertical corrector bump

Determine the horizontal $\Delta displacement$ between the intervals for the different verical orbit bumps

The measured horizontal beam position should be independent of the vertical beam poisition

Summary

Installation of a Rogowski Coil as horizontal BPM in COSY

- An uncooled Rogowski coil worked as an horizontal BPM in an accelerator enviroment
- The theoretical predictions for an horizontal BPM have been proven
- The measured sensitivity to the perpendicular axis is at least 400 times smaller and can be regarded as negligible within the confidence intverval

Measurement of the horizontal and vertical beam position dependency

Outlook

Characterisation of the horizontal and vertical Rogowski BPMs in the laboratory

Installation of a moveable Rogowski coil in COSY

Rogowski Coil Testbench

Installation of the Rogowski coil

Movement of the Rogowski coil

Null detector

Changing the postion of the coil in horizontal and certical directon until the beam passes central the coil:

 $\frac{\Delta U_{up,dn}}{\Sigma U_{up,dn}} = 0 \qquad \text{and} \qquad$

$$\frac{\Delta U_{left,right}}{\Sigma U_{left,right}} = 0$$

Calibration of Referenz Orbit Highest Sensetivity at Coil Centre

Null detector

Changing the position of the coil in horizontal and vertical direction until the beam passes central the coil:

 $rac{\Delta U_{up,dn}}{\Sigma U_{up,dn}}=0$ and

$$\frac{\Delta U_{left,right}}{\Sigma U_{left,right}} = 0$$

Calibration of referenz orbit Highest sensitivity at coil centre

Null detector

