

Determination of the Invariant Spin Axis in a COSY model using Bmad

 March 22, 2024 I Maximilian Vitz
Motivation - Matter/Antimatter Asymmetry

- Big Bang:

Equal amount of matter \&
antimatter

- Early universe:

Asymmetric annihilation
process $B+\bar{B} \rightarrow \gamma \gamma+\ldots$

$$
N_{B}=N_{\bar{B}}
$$

- Today:

Asymmetry between matter and antimatter.

Asymmetry	from SCM	measured
$\left(N_{B}-N_{\bar{B}}\right) / N_{\gamma}$	10^{-18}	10^{-10}

\Rightarrow According to A. Sakharov: More CP Violation is needed

JEDI

EDM - Electric Dipole Moment

- EDM and MDM are fundamental properties of elementary particles:

$$
\begin{aligned}
\vec{d} & =d \cdot \vec{S}=\eta_{E D M} \frac{e}{2 m c} \vec{S} \\
\vec{\mu} & =\mu \cdot \vec{S}=g_{M D M} \frac{e}{2 m c} \vec{S}
\end{aligned}
$$

- EDM violates \mathbf{P} and $\mathbf{C P}$ symmetry assuming CPT Theorem holds! \Rightarrow no finite EDM measured so far \Rightarrow candidate for more CP violation than established in SM

- EDM measurement of various particles necessary to test different mechanism.

Thomas-BMT - Spin Dynamics

- Evolution of spin motion in a storage ring is described by Thomas-BMT Equation.
- One is able to seperate spin precession due to MDM and due to EDM.
- In a pure magnetic storage ring the magnetic field \vec{B} field is applied vertically:
- MDM causes in storage ring plane precession.
- EDM causes a fast vertical precession (out of storage ring plane) with small amplitude.

$$
\frac{d \vec{S}}{d t}=\left(\vec{\Omega}_{M D M}+\vec{\Omega}_{E D M}\right) \times \vec{S}=\frac{q}{m}\left(G \vec{B}+\frac{\eta}{2} \vec{\beta} \times \vec{B}\right) \times \vec{S}
$$

- In plane spin precession takes place around the ISA (Invariant Spin Axis) $\vec{n}_{\text {ISA }}$.

ISA - Invariant Spin Axis

- Spin vectors are aligned with ISA \Rightarrow No spin precession!
- Spin vectors are not aligned with ISA:
- MDM: Precession in ring plane
- EDM: Permanent ISA tilt in radial direction and precession out of ring plane

$$
\begin{aligned}
& \phi_{E D M}=\arctan \left(\frac{\eta_{E D M} \beta}{2 G}\right) \\
& \vec{n}_{I S A} \approx\left(\begin{array}{c}
\phi_{E D M}+\phi_{R i n g} \\
1 \\
\xi_{\text {Ring }}
\end{array}\right)
\end{aligned}
$$

COSY - COoler SYnchrotron

- Circumference 184 m
- Polarized/Unpolarized Deuterons and Protons
- $p=0.30-3.70 \mathrm{GeV} / \mathrm{c}$
- Internal and external experiments
- Stored particles/cycle $N \approx 10^{9}$
- 2 Electron Coolers
- $p_{\text {Deuteron }}=0.970 \mathrm{GeV} / \mathrm{c}$

- Electron Cooler is operating at that energy

JEDI

Simulation - Bmad Model of COSY

- 24 Dipoles including Fringe Field and Field Errors
- Large impact on hor. Orbit
- 56 idealized Quadrupoles
- Approx. 30 hor./ver. BPMs
- Approx. 20 hor./ver. Steerers
- Minimize systematic Orbit observed by BPM
- Correct systematic orbit
 from misaligned magnets.
- Challenge: Simulate the systematic orbit, seen by BPM!
- Position of BPM center and quadrupole center to design orbit of COSY is unknown!

Magnet Alignment Campaigns

- Two different measurement campaigns have been performed:
- BBA: Identify relative position quadrupole to BPM center (BBA Group: BPM + Quads)!
- LB: Laser based measurement of magnet frame orientation (individual Quad)!
- Precision of BBA
(Group): $\pm 40 \mu \mathrm{~m}$
- Precision of LB (individual Quad):
$\pm 200 \mu \mathrm{~m}$
- Overall Problem:
- Simulation demands absolute alignment
- Rel. Alignment \neq Abs. Alignment

Optimization of BPM Orbit

- Vary misalignments of Quads, BPMs and BBA Groups within given precision.
- Optimizer: Bring BPM orbit to zero by adjusting misalignments of the BBA Groups!

- Apart from a few BPM values, simulation and measurement match well!

JEDI
g) Јӥцисн

Results - Simulation vs. Experiment

- Bmad Simulation predicts the rad. and Ion. ISA to be well below 0.1 mrad.
- The experiment measures ISA in mrad range ($2-5 \mathrm{mrad}$).
- Such large ISA tilts require an absolut vertical orbit of $\pm 20 \mathrm{~mm}$.
- Bmad Simulation confirms that experiment does not measure the ISA!

- Research is ongoing, what causes the problem in the experimental procedure.

Appendix - Solenoid

- Provides longitudinal magnetic field:
- Used to rotate polarization in horizontal plane (RF Solenoid).
- Also provides compensation field (Snake Solenoid / 2 MeV Solenoid).

Appendix - JEPO - JEdi POlarimeter

- JEPO for Determination of Beam Polarization:
- Left-Right Assymetry indicates vertical Polarization
- Up-Down Assymetry indicates horizontal Polarization

Appendix - SCT - Spin Coherence Time

- $\tau_{\text {SCT }}$ defines time until initial polarization falls below $1 / \mathrm{e}$.
- Precise adjustments of three sextupole families in the ring.
- In COSY $\tau_{\text {SCT }}$ of over 1000 seconds with about 10^{9} stored deuterons achieved.
- Large value of τ_{SCT} of crucial importance, since $\sigma_{\text {stat }} \propto \tau_{\text {SCT }}^{-1}$.
- Build-up time to observe polarization $P_{y}(t)$ limited by
 $\tau_{\mathrm{SC} T}$.

EDM - Ongoing Research

- No finite EDM found yet. No direct measurement on charged hadrons.
- EDM measurement of various particles necessary to test different mechanism.

ISA - Measurement Principle

- Observable quantity is polarization: $\vec{P}=1 / n \sum \vec{S}$.
- Problem: No net EDM effect observable 50% of revolution time polarization is $\|$ to momentum 50% of revolution time polarization is anti-|| to momentum.

- Solution:

Utilize resonant device:
\rightarrow No impact on orbit
\rightarrow Impact on spin precession

- Net EDM effect can be observed!

Spin Manipulator - RF (Radiofrequency) Wien Filter

- RF device with E-Field and B-Field, tuned to spin precession frequency ω.
- Rad. E-field: $E_{x} \propto \cos \left(\omega t+\phi_{r e l}\right)$
- Ver. M-field: $B_{y} \propto \cos \left(\omega t+\phi_{\text {rel }}\right)$
- Lorentz Force in the center vanishes. Beam Orbit is not perturbated.
g Ј Јйцсн

ISA - Measurement Set-Up

- Inject vertically polarized deuteron beam.
- RF Solenoid:

Rotate polarization into accelerator plane.

- Radiofrequency Wien-Filter (WF):

Resonant device tuned to spin precession. Macroscopic build-up of vertical polarization.

- Polarimeter:

Measure build-up of vertical polarization.

- Challenges:
- Ring imperfections cause systematic effects
- Compensation via static solenoid $\xi_{\text {Sol }}$

$$
\vec{n}_{I S A} \approx\left(\begin{array}{c}
\phi_{E D M}+\phi_{R i n g} \\
1 \\
\xi_{S o l}+\xi_{R i n g}
\end{array}\right)
$$

JEDI

Vertical Build Up with WF and Solenoid

- Vertical build up $\frac{d}{d t} p_{y}(t)$ depends on:

$$
\begin{aligned}
\frac{d}{d t} p_{y}(t) & \propto\left|\vec{n}_{W F} \times \vec{n}_{I S A}\right|^{2}=\left|\left(\begin{array}{c}
\phi_{W F} \\
1 \\
0
\end{array}\right) \times\left(\begin{array}{c}
\phi_{E D M}+\phi_{R i n g} \\
1 \\
\xi_{S o l}+\xi_{R i n g}
\end{array}\right)\right|^{2} \\
& \left.=\left(\phi_{E D M}+\phi_{\text {Ring }}\right)-\phi_{W F}\right)^{2}+\left(\xi_{S o l}+\xi_{\text {Ring }}\right)^{2}
\end{aligned}
$$

d) JüLICH

Forschungszentrum

Learnings from BBA

- BBA: Identification of the relative position of quadrupole center to BPM center!
- Only possible if quadrupole is in vicinity of BPM:
- Straights: Quadrupole tripplets can be seen as one unit (4x Quads, 1x BPM).
- Arcs: Equal distribution over arc only allows one to one match up (1x Quad, 1x BPM).
- Precision of alignment: $\pm 40 \mu \mathrm{~m}$
- Problems:
- No partner in vicinity of some BPMs/Quads
- Rel. Alignment \neq Abs. Alignment

