

Determination of the Invariant Spin Axis in a COSY model using Bmad

 March 22, 2023 I Maximilian Vitz
Motivation - Matter/Antimatter Asymmetry

- Big Bang:

$$
N_{B}=N_{\bar{B}}
$$

Equal amount of matter \&
antimatter

- Early universe:

Asymmetric annihilation
processes $B+\bar{B} \rightarrow \gamma \gamma+\ldots$ \Downarrow

Sakharov Criteria:

1. Baryon number violation
2. No thermal equilibrium
3. C and CP-Violation

- Today:

Asymmetry between matter and antimatter.

Asymmetry	from SCM	measured
$\left(N_{B}-N_{\bar{B}}\right) / N_{\gamma}$	10^{-18}	10^{-10}

\Rightarrow According to A. Sakharov: CP Violation is needed

EDM - Electric Dipole Moment

- Fundamental property of a elementary particle:

$$
\vec{a}=d \cdot \vec{S}=\frac{\eta}{2} \frac{e}{m} \vec{S}
$$

- Similar to the MDM (Magnetic Dipole Moment):

$$
\vec{\mu}=\mu \cdot \overrightarrow{\mathbf{S}}=\frac{g}{2} \frac{e}{m} \vec{S}
$$

$$
\begin{aligned}
\hat{\mathcal{H}} & =-d \cdot \vec{S} \cdot \vec{E}-\mu \cdot \vec{S} \cdot \vec{B} \\
\mathcal{P}(\hat{\mathcal{H}}) & =+d \cdot \vec{S} \cdot \vec{E}-\mu \cdot \vec{S} \cdot \vec{B} \\
\mathcal{T}(\hat{\mathcal{H}}) & =+d \cdot \overrightarrow{\mathbf{S}} \cdot \vec{E}-\mu \cdot \vec{S} \cdot \vec{B}
\end{aligned}
$$

- EDM violates both P and CP symmetry assuming CPT Theorem holds
- EDM is a probe for CP violation beyond the SM

EDM Limits

Spin Dynamics in a Storage Rings

- The EDM of charged particles can be measured by studying the spin motion of particles in a storage ring.
- Evolution of spin motion in a storage ring is described by the Thomas-BMT Equation defined by MDM and EDM contributions.
- As in a pure magnetic storage rings the magnetic field \vec{B} field is applied vertically
- MDM causes in plane precession.
- EDM causes out of plane precession.

$$
\frac{d \vec{S}}{d t}=\left(\vec{\Omega}_{M D M}-\vec{\Omega}_{c y c}+\vec{\Omega}_{E D M}\right) \times \vec{S}=\frac{q}{m}\left(G \vec{B}+\frac{\eta}{2} \vec{\beta} \times \vec{B}\right) \times \vec{S}
$$

- In plane spin precession takes place around the ISA (Invariant Spin Axis) $\vec{n}_{\text {ISA }}$.

Invariant Spin Axis

- No spin precession when spin vectors are aligned with ISA.
- Due to MDM, spin precesses in horizontal plane when not aligned with ISA.
- Due to EDM, the ISA is tilted in the radial direction n_{x} :

$$
\begin{gathered}
\phi_{E D M}=\arctan \left(\frac{\eta \beta}{2 G}\right) \\
\vec{n}_{I S A}=\left(\begin{array}{c}
\sin \phi_{E D M} \\
\cos \phi_{E D M} \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi_{E D M} \\
1 \\
0
\end{array}\right)
\end{gathered}
$$

Invariant Spin Axis

Spin Precession Plane

Invariant Spin Axis

S) Јӥйсн

Measurement Principle of ISA

- Inject vertically polarized deuteron beam.
- Solenoid: Rotate polarization into accelerator plane. Also used to compensate long. fields.
- Polarization vector precesses in accelerator plane around ISA.
- Wien-Filter: RF Device for torque on EDM. Originally in-plane polarization goes out-of-plane.
- Polarimeter: Measure build-up of vertical polarization.
- Challenges:
- Sufficient Spin Coherence Time

- Ring imperfections cause systematic effects

$$
\vec{n}_{I S A} \approx\left(\begin{array}{c}
\phi_{E D M}+\phi_{R i n g} \\
1 \\
\xi_{S o l}+\xi_{R i n g}
\end{array}\right)
$$

Radiofrequency (RF) Wien Filter

- RF device with E-Field and B-Field, tuned to spin precession frequency ω.
- Rad. E-field: $E_{x} \propto \cos \left(\omega t+\phi_{r e l}\right)$
- Ver. M-field: $B_{y} \propto \cos \left(\omega t+\phi_{\text {rel }}\right)$
- Lorentz Force in the center vanishes. Beam Orbit is not perturbated.

Resonant Wien Filter Method

- RF Wien Filter not included:

In plane spin precession due to MDM, small, fast oscillating vertical polarization due to EDM.
\Rightarrow No net build up of vertical polarization measurable.

- RF Wien Filter included:

As its tuned to spin precession frequency and used to accumulate the EDM signal.
\Rightarrow Enhanced oscillation, therefore net build up of vertical polarization measurable.

Vertical Polarization Build Up

- Build up $\epsilon \propto \frac{d}{d t} p_{y}(t)$ depends on orientation of ISA $\vec{n}_{\text {ISA }}$ to Wien Filter Fields $\vec{n}_{W F}$ and compensation of long. fields via Solenoid.
- To compensate EDM signal and radial systematics the Wien filter is rotated by an angle $\phi_{W F}$ around beam.

$$
\begin{aligned}
\epsilon^{2}\left(\phi_{W F}, \xi_{S o l}\right) & \propto\left|\vec{n}_{W F} \times \vec{n}_{I S A}\right|^{2}=\left|\left(\begin{array}{c}
\phi_{W F} \\
1 \\
0
\end{array}\right) \times\left(\begin{array}{c}
\phi_{E D M}+\phi_{\text {Ring }} \\
1 \\
\xi_{\text {Sol }}+\xi_{\text {Ring }}
\end{array}\right)\right|^{2} \\
& =\left(\left(\phi_{E D M}+\phi_{\text {Ring }}\right)-\phi_{W F}\right)^{2}+\left(\xi_{\text {Sol }}+\xi_{\text {Ring }}\right)^{2}
\end{aligned}
$$

JEDI

COSY - COoler SYnchrotron

- Circumference 184 m
- Accelerates and Stores Polarized/Unpolarized Deuterons and Protons
- $p=0.3-3.7 \mathrm{GeV} / \mathrm{c}$
- Internal and external experiments
- Hadron

Physics/Precision

- 2 Electron Coolers
- 1 Stochastic Coolers

Precursor Runs

- Direct Measurement of deuteron EDM performed in the two so called precursor runs by the JEDI-Collaboration.
- Exp. Res.: $\phi_{W F} \approx-1.76(1) \mathrm{mrad} \quad, \xi_{\text {sol }} \approx+5.53(4) \mathrm{mrad}$ Sim. Res.: $\phi_{\text {WF }} \approx-0.1119(3) \mathrm{mrad}, \xi_{\text {Sol }} \approx-0.3697(3) \mathrm{mrad}$

- Differences are yet to be explained. One problem is that the fit is only correct if Beam \| $\vec{B}_{\text {sol }}$, also the simulation model needs improvements e.g. the orbit.

Summary and Outlook

- EDMs of charged particles can be directly measured in storage rings. An RF Wien Filter device can be used for such a purpose to causes a net build-up of vertical polarization.
- The Invariant Spin Axis is the observable for the EDM magitude. It is impacted by the EDM as well as ring imperfections.
- The results of the precurser runs can yet not be explained within the simulation. Further improvements on the simulation model as well in determining correction factors for non ideal trajectories through the devices are needed.
- A new beam time is planned for this purpose within the next months.

Appendix - Siberian Snake - Solenoid

- Provides longitudinal magnetic field:
- Used to rotate polairzation in horizontal plane.
- Also provides field to search for the ISA.

Appendix - JEPO - JEdi POlarimeter

- JEPO for Determination of Beam Polarization:
- Left-Right Assymetry indicates vertical Polarization
- Up-Down Assymetry indicates horizontal Polarization

Appendix - SCT - Spin Coherence Time

- $\tau_{\text {SCT }}$ defined as the time until initial polarization falls below 1/e.
- Precise adjustments of three sextupole families in the ring.
- In COSY $\tau_{\text {SCT }}$ of over 1000 seconds with about 10^{9} stored deuterons achieved.
- Large value of τ_{SCT} of crucial importance, since $\sigma_{\text {stat }} \propto \tau_{\text {SCT }}^{-1}$.
- Buildup time \dagger to observe polarization $P_{y}(t)$ limited by

$\tau_{\mathrm{SC} T}$.

