

# Determination of the Invariant Spin Axis in a COSY model using Bmad March 22, 2023 | Maximilian Vitz







Member of the Helmholtz Association







# Motivation - Matter/Antimatter Asymmetry

 ● Big Bang:
 Equal amount of matter & antimatter
 ↓

• Early universe: Asymmetric annihilation processes  $B + \bar{B} \rightarrow \gamma \gamma + ...$  $\downarrow \downarrow$ • Today:  $N_B = N_{\bar{B}}$ 

Sakharov Criteria:

- 1. Baryon number violation
- 2. No thermal equilibrium
  - 3. C and CP-Violation

 Today: Asymmetry between matter and antimatter.

| Asymmetry                 | from SCM   | measured   |
|---------------------------|------------|------------|
| $(N_B-N_{ar B})/N_\gamma$ | $10^{-18}$ | $10^{-10}$ |

#### $\Rightarrow$ According to A. Sakharov: CP Violation is needed







#### **EDM - Electric Dipole Moment**

- Fundamental property of a elementary particle:  $\vec{d} = d \cdot \vec{S} = \frac{\eta}{2} \frac{e}{m} \vec{S}$
- Similar to the MDM (Magnetic Dipole Moment):  $\vec{\mu} = \mu \cdot \vec{S} = \frac{g}{2} \frac{e}{m} \vec{S}$

$$\hat{\mathcal{H}} = -d \cdot \vec{S} \cdot \vec{E} - \mu \cdot \vec{S} \cdot \vec{B}$$
$$\mathcal{P}(\hat{\mathcal{H}}) = +d \cdot \vec{S} \cdot \vec{E} - \mu \cdot \vec{S} \cdot \vec{B}$$
$$\mathcal{T}(\hat{\mathcal{H}}) = +d \cdot \vec{S} \cdot \vec{E} - \mu \cdot \vec{S} \cdot \vec{B}$$



- EDM violates both P and CP symmetry assuming CPT Theorem holds
- EDM is a probe for CP violation beyond the SM







# **EDM Limits**









# Spin Dynamics in a Storage Rings

- The EDM of charged particles can be measured by studying the spin motion of particles in a storage ring.
- Evolution of spin motion in a storage ring is described by the **Thomas-BMT Equation** defined by MDM and EDM contributions.
- As in a pure magnetic storage rings the magnetic field  $\vec{B}$  field is applied vertically
  - MDM causes in plane precession.
  - EDM causes out of plane precession.

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\textit{MDM}} - \vec{\Omega}_{\textit{cyc}} + \vec{\Omega}_{\textit{EDM}}) \times \vec{S} = \frac{q}{m} \left( \mathbf{G} \vec{B} + \frac{\eta}{2} \vec{\beta} \times \vec{B} \right) \times \vec{S}$$

• In plane spin precession takes place around the ISA (Invariant Spin Axis)  $\vec{n}_{ISA}$ .

Maximilian Vitz







# **Invariant Spin Axis**

- No spin precession when spin vectors are aligned with ISA.
- Due to MDM, spin precesses in horizontal plane when not aligned with ISA.
- Due to EDM, the ISA is tilted in the radial direction  $n_x$ :

$$\phi_{EDM} = rctan\left(rac{\etaeta}{2G}
ight)$$

$$ec{n}_{ISA} = \left(egin{array}{c} \sin \phi_{EDM} \ \cos \phi_{EDM} \ 0 \end{array}
ight) pprox \left(egin{array}{c} \phi_{EDM} \ 1 \ 0 \end{array}
ight)$$



#### Maximilian Vitz



7/13

#### Measurement Principle of ISA

- Inject vertically polarized deuteron beam.
- **Solenoid**: Rotate polarization into accelerator plane. Also used to compensate long. fields.
- Polarization vector precesses in accelerator plane around ISA.
- Wien-Filter: RF Device for torque on EDM. Originally in-plane polarization goes out-of-plane.
- **Polarimeter**: Measure build-up of vertical polarization.
- Challenges:

Maximilian Vitz

- Sufficient Spin Coherence Time
- Ring imperfections cause systematic effects





 $ec{n}_{ISA} pprox \left( egin{array}{c} \phi_{EDM} + \phi_{Ring} \ 1 \ \xi_{\circ}, \perp \xi_{-} \end{array} 
ight)$ 









#### Radiofrequency (RF) Wien Filter

JEDI



• RF device with E-Field and B-Field, tuned to spin precession frequency  $\omega$ .

- $\blacktriangleright$  Rad. E-field:  $E_x \propto \cos{(\omega t + \phi_{rel})}$
- Ver. M-field:  $B_y \propto \cos{(\omega t + \phi_{rel})}$
- Lorentz Force in the center vanishes. Beam Orbit is not perturbated.







# **Resonant Wien Filter Method**

- RF Wien Filter not included:
   In plane spin precession due to MDM,
   small, fast oscillating vertical
   polarization due to EDM.
- $\Rightarrow$  No net build up of vertical polarization measurable.
  - **RF Wien Filter included:** As its tuned to spin precession frequency and used to accumulate the EDM signal.
- $\Rightarrow$  Enhanced oscillation, therefore net build up of vertical polarization measurable.









#### Vertical Polarization Build Up

- Build up  $\epsilon \propto \frac{d}{dt} p_{y}(t)$ depends on orientation of ISA  $\vec{n}_{ISA}$  to Wien Filter Fields  $\vec{n}_{WF}$  and compensation of long. fields via Solenoid.
- To compensate EDM signal and radial systematics the Wien filter is **rotated** by an angle  $\phi_{WF}$  around beam.



Determination of the Invariant Spin Axis in a COSY model using Bmad







#### **COSY - COoler SYnchrotron**

- Circumference 184 m
- Accelerates and Stores
   Polarized/Unpolarized
   Deuterons and Protons
- $p = 0.3 3.7 \, {\rm GeV/c}$
- Internal and external experiments
- Hadron
   Physics/Precision
   Experiments
- 2 Electron Coolers
- 1 Stochastic Coolers









#### **Precursor Runs**

- Direct Measurement of deuteron EDM performed in the two so called precursor runs by the JEDI-Collaboration.
- Exp. Res.:  $\phi_{WF} \approx -1.76(1) \text{ mrad}$ ,  $\xi_{Sol} \approx +5.53(4) \text{ mrad}$ Sim. Res.:  $\phi_{WF} \approx -0.1119(3) \text{ mrad}$ ,  $\xi_{Sol} \approx -0.3697(3) \text{ mrad}$



• Differences are yet to be explained. One problem is that the fit is only correct if Beam  $\|\vec{B}_{sol}$ , also the simulation model needs improvements e.g. the orbit.

m.vitz@fz-juelich.de







# Summary and Outlook

- EDMs of charged particles can be directly measured in storage rings. An **RF Wien Filter** device can be used for such a purpose to causes a net build-up of vertical polarization.
- The **Invariant Spin Axis** is the observable for the EDM magitude. It is impacted by the EDM as well as **ring imperfections**.
- The results of the precurser runs can yet not be explained within the simulation. Further improvements on the **simulation model** as well in determining **correction factors** for non ideal trajectories through the devices are needed.
- A **new beam time** is planned for this purpose within the next months.







#### Appendix - Siberian Snake - Solenoid



- Provides longitudinal magnetic field:
  - Used to rotate polaization in horizontal plane.
  - Also provides field to search for the ISA.

Maximilian Vitz

m.vitz@fz-juelich.de







#### Appendix - JEPO - JEdi POlarimeter



- JEPO for Determination of Beam Polarization:
  - Left-Right Assymetry indicates vertical Polarization
  - Up-Down Assymetry indicates horizontal Polarization







#### Appendix - SCT - Spin Coherence Time

- $\tau_{SCT}$  defined as the time until initial polarization falls below 1/e.
- Precise adjustments of three sextupole families in the ring.
- In COSY  $\tau_{SCT}$  of over 1000 seconds with about  $10^9$  stored deuterons achieved.
- Large value of  $\tau_{SCT}$  of crucial importance, since  $\sigma_{stat} \propto \tau_{SCT}^{-1}$ .
- Buildup time t to observe polarization  $P_y(t)$  limited by  $\tau_{SCT}$ .

