

SIMULATIONS OF BEAM DYNAMICS AND BEAM LIFETIME FOR THE PROTOTYPE EDM STORAGE RING

29.03.2022

DPG Spring Meeting

II. Physikalisches

Saad Siddique

Member of the Helmholtz Association

Introduction 1)

- EDM Measurement using Storage Ring 2)
- 3) Prototype EDM Storage Ring
- **Simulation Results** 4)
- Conclusion 5)

INTRODUCTION

* Cosmological Models

Member of the Helmholtz Association

Matter

Electric Dipole Moment (EDM)

- **EDM**: a permanent separation of positive and negative charge (vector along spin direction)
- Fundamental property of particles (like mass, charge, magnetic moment)
- Existence of EDM only possible if violation of time reversal and parity symmetry

EDM MEASUREMENT USING STORAGE RING

Basic Principle

- 1) Inject longitudinally polarized beam in storage ring
- Radial electric field interacting with EDM (torque) 2)
- 3) Observe vertical polarization with time

Thomas-BMT-Equation Spin motion:

[3]

Stage 1

Stage 3

[4]

Precursor experiment at COSY at FZ Jülich

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement`s precision

Prototype proton storage ring

- Electric magnetic storage ring
- Simultaneous CW and CCW beams

III. Physikalisches

Operates at 30 MeV and 45 MeV

- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

Member of the Helmholtz Association

Page 6

Stage 1

Precursor experiment at COSY at FZ Jülich

- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement`s precision

Stage 2

Prototype proton storage ring

- Electric magnetic storage ring
- Simultaneous CW and CCW beams

III. Physikalisches

Operates at 30 MeV and 45 MeV

Page 7

Stage 3

[4]

Final storage ring

- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

Member of the Helmholtz Association

PROTOTYPE EDM STORAGE RING [5]

Goals:

- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously $\tau > 1000 sec$
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

RING DESIGN AND PARAMETERS [5]

Basic layout

- Fourfold symmetric squared ring
- Circumference ≈ 123 m
- Each straight section is 8m long
- Three families of quadrupoles will be used
 - i. Focusing QF
 - ii. Defocusing QD
 - iii. Straight section QSS
- Ring will be operated in two modes
 - i. With all electric bendings (at T=30 MeV)
 - ii. With electric and magnetic bendings (at T=45 MeV)

Page 9

SIMULATION RESULTS

- Lattice Optics
- Estimations of Beam Losses

MADX (Methodical Accelerator Design)

One cell = QSS-d-QF-d-EB-d-QD-d-EB-d-QF-d-QSS

[6]

Betatron tunesBetatron functions $0.2 \le Q_x \le 2.5$ $\beta_x \le 20 m$ $0.1 \le Q_y \le 2.5$ $\beta_y \le 400 m$

- Four different lattices studied
 - 1. Strong Lattice with $\beta_{y-max} = 33 m$
 - 2. Medium Lattice with $\beta_{y-max} = 100 m$
 - 3. Weak Lattice with $\beta_{y-max} = 200 m$
 - 4. Weaker Lattice with $\beta_{y-max} = 300 m$

QSS = straigh-section Quadrupole d = drift section QF = focusing quadrupole QD = defocusing quadrupole EB = electrostatic bending

[5]

QD

EB

QF

QSS

QF

Page 11

III. Physikalisches

ESTIMATION OF BEAM LOSSES [9,10,11,12]

Four main effects of beam losses

- 1. Hadronic Interactions
- 2. Coulomb Scattering
- 3. Energy Loss Straggling
- 4. Intra Beam Scattering

i. <u>Residual gas</u>

- Gases are $H_2: N_2$ with 80:20
- $\sigma_{tot} = 204 \text{ mb}$
- Nitrogen equivalent pressure $P_{eq} = 2.8 \times 10^{-11} Torr$
- $n_{rg} = 5.30 \times 10^5 \ atoms/cm^3$
- $f_0 = 0.596$ MHz

Two different scenarios

- . With Residual gas
- II. With Residual Gas + Target

ii. <u>Target</u>

• Carbon target with thickness $n_t \sim 2 \times 10^{12}$ atoms /cm²

Calculations for four lattices are performed in each case

1. Hadronic interaction

$$\tau^{-1} = n\sigma_{tot}f_0$$

 $\tau_{loss} = beam loss rate$ n = target thickness or rest gas density $\sigma_{tot} = total cross section$ $f_0 = revolution frequency$

i. <u>Residual gas</u>

$$\tau^{-1} = 3.51 \times 10^{-9} \, s^{-1}$$
 < $\tau^{-1} = 2.14 \times 10^{-6} \, s^{-1}$

As there is no dependency on optical functions this effect remains the same for all lattices

2. Coulomb Scattering

A=Transverse acceptance > 10 mm mrad β_{\perp} = Transverse betatron amplitude

3. Energy Loss Straggling

P=relative beam loss probability per turn

Probability depends on maximum energy loss (ϵ_{max}) and longitudinal acceptance (δ_{max})

$$\delta_{acc} = \frac{chamber \ radius}{Max. \ dispersion} = \frac{30 \ mm}{D_{max}}$$

No beam loss with T=30 MeV theoretically

Member of the Helmholtz Association

4. IntraBeam Scattering (IBS)

$$\tau_{loss}^{-1} = \frac{D_{\parallel}^{IBS}}{L_c \delta_{acc}^2}$$

$$D_{\parallel}^{IBS} = longitudinal diffusion coefficient \sim \frac{N}{(\gamma\beta)\epsilon^{3/2}\sqrt{\beta}}$$

$$\epsilon = emittance of beam = 10 mm mrad$$

$$\beta = average beta function$$

$$Lc= coulomb logarithm$$

$$N=10^9 particles$$

$$\gamma\beta = beam momentum$$

$$E = hordinal diffusion coefficient \sim \frac{N}{(\gamma\beta)\epsilon^{3/2}\sqrt{\beta}}$$

$$\frac{10^{-4}}{2.30}$$

$$\frac{$$

Member of the Helmholtz Association

Total Beam loss rate

$$\left(\frac{1}{\tau}\right)_{Total} = \left(\frac{1}{\tau}\right)_{HI} + \left(\frac{1}{\tau}\right)_{CS} + \left(\frac{1}{\tau}\right)_{ES} + \left(\frac{1}{\tau}\right)_{IBS}$$

Lattice type	$1/\tau_{loss}$ (10 ⁻⁴ s ⁻¹)	$ au_{total}\left(s ight)$
Strong	8.82	1133
Medium	22.34	447
Weak	59.49	168
Weaker	117.79	85

Summary:

- Preliminary design of prototype EDM ring
- Most dominating effect is Single Coulomb Scatterings
- Lattice with $\beta_{y-max} \leq 100 m$ is preferable for longer beam lifetime.

Outlook:

- Further investigations on beam and spin dynamics.
- Conceptual studies of PTR design is under consideration.

THANK YOU

REFERENCES

- 1. Vera Poncza, Extensive Optimization of a Simulation Model for the Electric Dipole Moment Measurement at the Cooler Synchrotron COSY
- 2. PhD thesis, RWTH Aachen 2021
- 3. M.S. Rosenthal. Experimental Benchmarking of Spin Tracking Algorithms for Electric Dipole Moment Searches at the Cooler Synchrotron COSY. PhD thesis, RWTH Aachen U., 2016.
- 4. A.D. Sakharov. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. Soviet Physics Uspekhi, 34(5):392–393, May 1991.
- 5. J. Pretz et al. Measurement of Permanent Electric Dipole Moments of Charged Hadrons in Storage Rings. Hyperfine Interact., 214(1-3):111–117, 2013.
- 6. JEDI collaboration F. Abusaif et al. Feasibility Study for an EDM Storage Ring. Technical Report arXiv:1812.08535, Forschungszentrum Jülich Germany, Dec 2018. * Temporary entry *.
- 7. A. Lehrach et al. Design of a Prototype EDM Storage Ring. In Proceedings, 23rd International Spin Physics
- 8. Symposium: Ferrara, Italy, pages 10–14, 2018.
- 9. H. Grote and F. Schmidt. CERN MADX introduction. <u>http://mad.web.cern.ch/mad/madx.old/Introduction/doc.html</u>, 2002.
- 10. R. Baartman. Electrostatic Bender Fields, Optics, Aberrations, with Application to the Proton EDM Ring. Technical report, TRIUMF, Dec 2013.
- 11. R. Talman. Miscellaneous Calculations for a Fully Electro-static Proton EDM Experiment, Version II. unpublished, April 2010.
- 12. P. Grafström. Lifetime, Cross-sections and Activation. In CERN Accelerator School, vacuum in accelerators, Platja d'Aro, Spain, 16-24 May 2006, pages 231–226, 2007.
- 13. P. Möller. Beam-Residual Gas Interactions. In CERN Accelerator School : Vacuum Technology, Snekersten, Denmark,
- 14. 28 May 3 Jun 1999, pages 155–164, 1999.
- 15. F. Hinterberger. Beam-Target Interaction and Intrabeam Scattering in the HESR Ring. Emittance, Momentum Resolution and Luminosity. Technical Report JUEL- 4206, Forschungszentrum Jülich GmbH (Germany), Feb 2006.

TRANSFER MATRIX FOR ELECTROSTATIC DEFLECTOR

For pure electrostatic deflectors

- Transfer matrices derived from Hamiltonian (a brilliant work done by Rick Bartmaan)
- For non-relativistic and the cylindrical electrodes

with $\xi = \sqrt{2}$ and $\eta = 0$ $\eta =$ vertical focusing strength

ESTIMATION OF BEAM LOSSES

PTR Lattices

Lattice type	$\delta_{acc} \left(10^{-3} ight)$
Strong	2.519
Medium	2.588
Weak	2.514
Weaker	2.466

Coulomb Scattering tables With R.G with carbon target

Lattice Type	$BLR(10^{-5}sec^{-1})$	Lattice Type	$BLR(10^{-4}sec^{-1})$
Strong	4.57	Strong	6.46
Medium	14.30	Medium	20.22
Weak	40.66	Weak	57.48
Weaker	81.96	Weaker	115.87

