

EDM POLARIMETER DEVELOPMENT AT COSY for the JEDI Collaboration

28th February 2018, DPG Spring Meeting | Fabian Müller | IKP 2

ELECTRIC DIPOLE MOMENT

Electric Dipole Moment (EDM): $\vec{d} = d\vec{S}$ Magnetic Dipole Moment (MDM): $\vec{\mu} = \mu \vec{S}$

$$H = -d\vec{S} \cdot \vec{E} - \mu \vec{S} \cdot \vec{B}$$
$$T : H = +d\vec{S} \cdot \vec{E} - \mu \vec{S} \cdot \vec{B}$$
$$P : H = +d\vec{S} \cdot \vec{E} - \mu \vec{S} \cdot \vec{B}$$

 \rightarrow EDM violates both CP and P symmetry! \rightarrow Talk by Maria Żurek (HK 41.1)

Simplified EDM measurement procedure

- Horizontally polarize deuteron
- Horizontal *E*-Field creates vertical spin build-up
- Elastic scattering creates asymmetry proportional to vertical polarization
- EDM is proportional to polarization build-up

POLARIMETER CONCEPTS

Fundamental Polarimetry Concept

Measure Asymmetry ϵ of elastic scattering \rightarrow with known Analyzing Power A_y calculate Polarization P_y

Polarimeter Working Principle

Polarized Cross Section:

$$\sigma_{pol}(\Theta) = \sigma_{unpol}(\Theta)[1 + rac{3}{2}P_yA_y(\Theta)\cos(\Phi)]$$

Asymmetry
e:

$$\epsilon = \frac{3}{2} P_y A_y$$

Cross Ratio ecret

$$\epsilon_{CR} = \frac{r-1}{r+1} \text{ with } r^2 = \frac{N_L^{\uparrow} N_R^{\downarrow}}{N_L^{\downarrow} N_R^{\uparrow}}$$

Key features for an EDM polarimeter

Ability to measure tiny polarization build-up:

$$rac{\partial ec{S}}{\partial t} pprox \textit{nrad}/s$$

- Long term stability:
 - $\rightarrow~$ continuous measurement for a long time due to the smallness of the EDM
- High accuracy:
 - \rightarrow high resolution
 - $\rightarrow~$ ability to identify elastically scattered deuterons

LYSO BASED POLARIMETER DEVELOPMENT

Advantages of the LYSO polarimeter

- Simple construction:
 - \rightarrow No strong \vec{E} and \vec{B} fields
 - \rightarrow Only two detection layers
- Modular setup:
 - $\rightarrow \ \ \text{Modules can be easily} \\ rearranged$
- Long term stability:
 - $\rightarrow \ \text{LYSO} \text{ is a radiation hard} \\ \text{scintillator}$
- High accuracy:
 - $\rightarrow~$ LYSO + SiPM modules have a high resolution
 - → Plastic and LYSO scintillators to create dE vs E plots for particle identification

Model of the full EDM polarimeter built from LYSO detector modules

HISTORY OF LYSO POLARIMETER DEVELOPMENT

1st Iteration

- 4 Modules were tested
- PMTs + 10cm LYSO crystals were used
- Bragg peak measurement showed: 8cm LYSO crystal is sufficient
- First experiment with SiPMs

HISTORY OF LYSO POLARIMETER DEVELOPMENT

2nd Iteration

2nd Iteration

- 24 Modules were tested
- SiPMs + 8cm LYSO crystals were used
- 4 different target material were tested
- Plastic scintillators in front of the modules for dE vs E plots
- \blacksquare Custom voltage supply for the SiPMs \rightarrow Talk by Dito Shergelashvili (HK 36.6)

HISTORY OF LYSO POLARIMETER DEVELOPMENT

3rd Iteration

- 52 Modules were examined
- 2 types of SiPM array (SensL and KETEK)
- 7 different target material were used
- Final mounting platform was tested

DAQ SYSTEM

DAQ SYSTEM

Slow Control & Online Analysis

- Spectra of all 52 module can be monitored online
- Online calculation of asymmetry and cross ratio
- Web interface for the slow control of the whole detector

RESULTS

Resolution / dE vs E plot for PID

- Resolution below 1.5 % for SiPM modules
- Plastic- and LYSO scintillators allows for the creation of dE vs E plots
- Elastically scattered deuterons can be clearly identified

RESULTS

Bragg Peak at 270 MeV

 Rotating split LYSO crystal → dE as a function of the penetration depth xn

$$\frac{dE}{dx} = \frac{dE_{x_n} - dE_{x_{n-1}}}{X_n - x_{n-1}}$$

- Measurement is in alignment with the simulation
- 8 cm of LYSO crystal is enough to stop 270 MeV deuterons

SUMMARY AND OUTLOOK

Summary

- Precise measurement of the polarization build-up is needed for EDM investigation
- A designated LYSO based polarimeter for EDM measurement is under development
- Tests of 52 LYSO based detection modules and a polarimetry setup were performed and show promising results
- Online analysis and slow control software was developed and successfully tested

Outlook

- Development of triangular plastic scintillator array for improved angular resolution
- Assembly of full polarimeter including target- and flight vacuum chamber
- Installation and test of the polarimeter inside of the COSY accelerator ring

