BEAM BASED ALIGNMENT Beam Based Alignment tests at COSY

March 19, 2018 | Tim Wagner, on behalf of the JEDI Collaboration |

Member of the Helmholtz Association

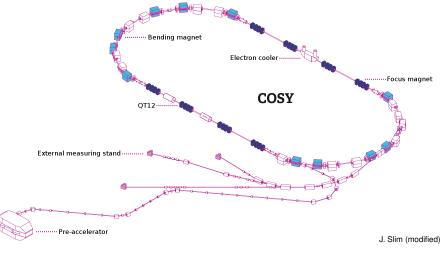
COSY Cooler Syncrotron

- Circumference: 184 m
- Provides polarized protons and deuterons
- Maximum momentum: 3.65 GeV/c
- Intensity: 10⁹ to 10¹⁰ particles
- Electron cooling
- Spin manipulators

Forschungszentrum Jülich

Slide 1

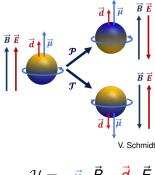
COSY Cooler Syncrotron



ELECTRIC DIPOLE MOMENT (EDM)

- Permanent EDMs of light hadrons are *T*- and *P*-violating
- \mathcal{CPT} theorem $\rightarrow \mathcal{CP}$ violation
- Measure EDMs of charged particles in storage rings
- $d_{Neutron} < 3 \times 10^{-26} \, \mathrm{e} \cdot \mathrm{cm}$
- $d_{Proton} < 5 \times 10^{-24} \, \mathrm{e} \cdot \mathrm{cm}$
- d_{Deuteron} = ?

$$\vec{d} = \eta \cdot \frac{q}{2mc}\vec{S}$$

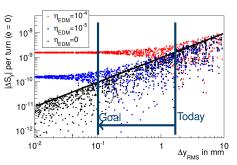


 $\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$ $\mathcal{P} : \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$ $\mathcal{T} : \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$

Slide 3

Why is it needed?

- For an EDM measurement the orbit has to be as good as possible
- Orbit RMS should be lower than 100 µm
 → Orbit Control
- Orbit Control corrects the beam to the BPM zero position



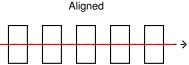
M.Rosenthal, PhD Thesis (modified)

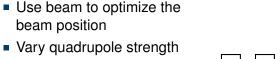
- Goal is to go central through all magnets (i.e. quadrupoles)
- Thus BPM to quadrupole offset has to be known
 → Beam Based Alignment

Member of the Helmholtz Association

March 19, 2018

- Observe orbit change
- Try to minimize the orbit change





BEAM BASED ALIGNMENT

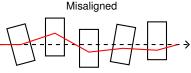
How does it work?

Member of the Helmholtz Association

March 19, 2018

BEAM BASED ALIGNMENT How does it work?

- Use beam to optimize the beam position
- Vary quadrupole strength
- Observe orbit change
- Try to minimize the orbit change



Slide 5

How does it work?

How does the orbit change when varying the quadrupole strength?

$$\Delta x(s) = \left(\frac{\Delta k x(\bar{s})I}{B\rho}\right) \left(\frac{1}{1 - k \frac{I\beta(\bar{s})}{2B\rho \tan \pi \nu}}\right)$$
$$\times \frac{\sqrt{\beta(s)}\sqrt{\beta(\bar{s})}}{2\sin \pi \nu} \cos(\phi(s) - \phi(\bar{s}) - \pi \nu)$$

 Not possible to calculate x(s) due to lack of precise knowledge of all other parameters

How does it work?

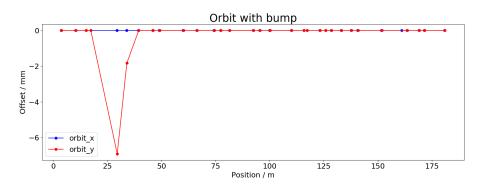
Use the following merit function

$$egin{aligned} f &= rac{1}{N_{ ext{BPM}}} \sum_{i=1}^{N_{ ext{BPM}}} (x_i (+\Delta k) - x_i (-\Delta k))^2 \ &\quad f \propto (\Delta x)^2 \propto (x(ar{s}))^2 \end{aligned}$$

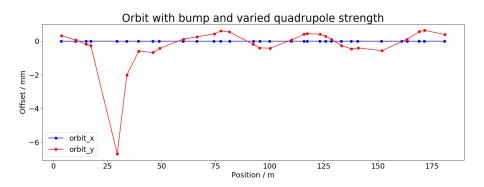
By finding the minimum the optimal beam position can be found

- Simulation of COSY done with MAD-X
- Option 1: Generate a bump inside the quadrupole
- Option 2: Move the quadrupole
- Vary the quadrupole strength
- Obseve the effect on the orbit
- Calculate the optimal position

Example Bump



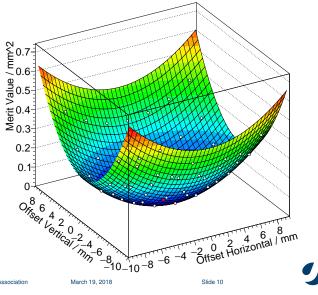
Example Bump



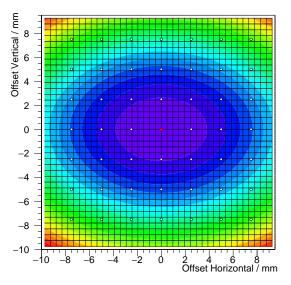
Member of the Helmholtz Association

March 19, 2018

Option 1 - Apply Bump

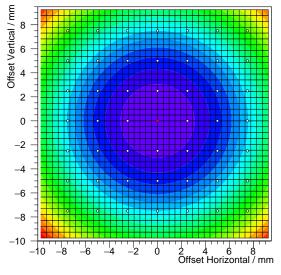


SIMULATION Option 1 - Apply Bump



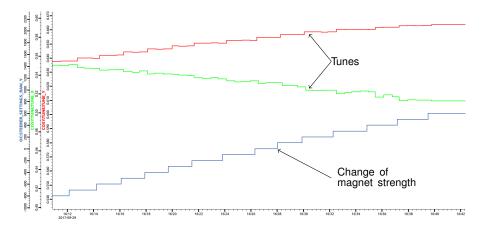
- Asymmetric due to imperfect bumps
- Different slopes of the beam for horizontal and vertical direction

Option 2 - Move Quadrupole

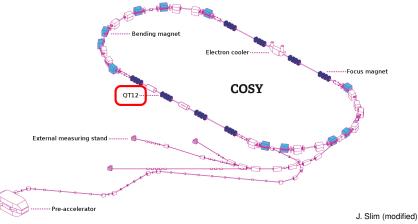


- Quadrupoles are powered in families of four
- On the poles of quadrupole QT12 the additional coils of the steerer BLW04 were recabled to work as a quadrupole

Quadrupole behavior



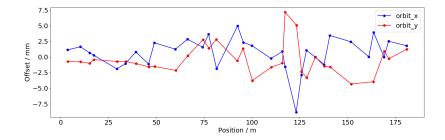
Location of QT12

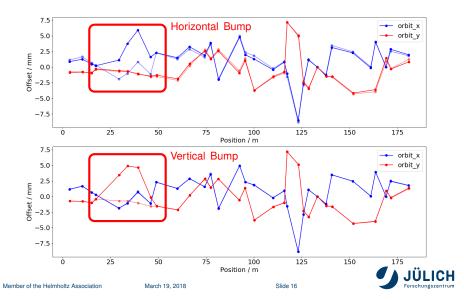


COSY scetch with position of quadrupole QT12 indicated

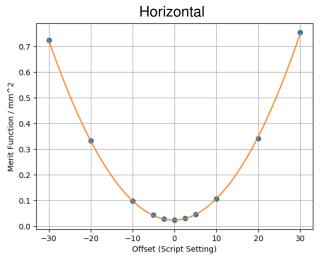
- Quadrupoles are powered in families of four
- On the poles of quadrupole QT12 the additional coils of the steerer BLW04 were recabled to work as a quadrupole
- Effectively the strength of quadrupole QT12 can be varied
- Local bumps applied at the position of the quadrupole
- Measured effect on orbit upon varying the quadrupole strength

MEASUREMENT Orbit

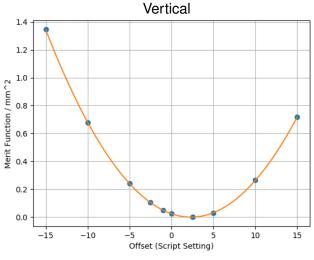




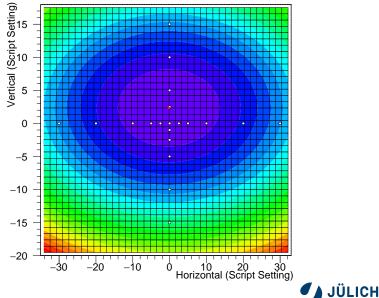
RESULTS



RESULTS



RESULTS



Forschungszentrum

	Optimal Position	in mm
Horizontal	$-0.255{\pm}0.028$	$-1.98{\pm}0.01$
Vertical	$2.329{\pm}0.011$	1.15±0.01

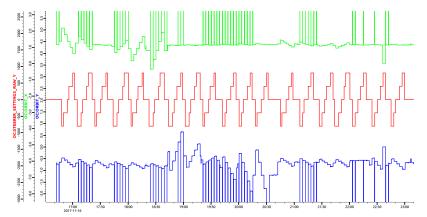
- Optimal position given in script setting
- The values in mm are the BPM 6 readings nearby

SUMMARY & OUTLOOK

- Beam based alignment works
- The change of the magnet strength with additional coils works
- Optimal beam position inside the quadrupole could be determined to be $(-1.98\pm0.01)\,\text{mm}$ horizontally and $(1.15\pm0.01)\,\text{mm}$ vertically
- Additional quadrupole magnets need to be changed to be individually controlled
- Measurement all along the ring to obtain quadrupole to BPM offsets

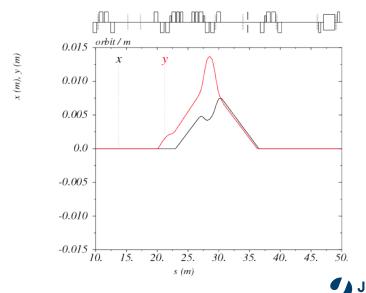
Member of the Helmholtz Association

MEASUREMENT SCREENSHOT



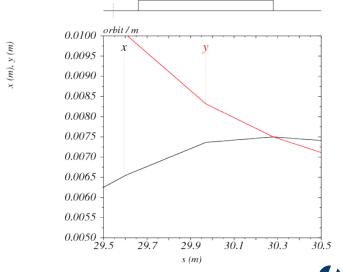
Screenshot of the measurement. In red the change of the magnet strength is shown and in green and blue an example for a bpm reading. For each scan a different beam position was used.

SIMULATION: BUMP



Forschung

SIMULATION: BUMP



Derivation of formula for orbit change

$$\Delta x(s) = \left(\frac{\Delta k \cdot x(\bar{s})I}{B\rho}\right) \left(\frac{1}{1 - k \frac{I\beta(\bar{s})}{2B\rho \tan \pi \nu}}\right) \frac{\sqrt{\beta(s)}\sqrt{\beta(\bar{s})}}{2\sin \pi \nu} \cos(\phi(s) - \phi(\bar{s}) - \pi \nu)$$

- Δx = orbit change
- s = measurement position
- \bar{s} = position of quadrupole
- Δk = change of quadrupole strength
- x(s) = position of beam inside the quadrupole

•
$$\beta$$
 = beta function

•
$$\phi$$
 = betatron phase

•
$$k = quadrupole strength$$

*B*_ρ = magnetic rigidity of the beam

Derivation of formula for orbit change

• Start with effect of a dipole kick θ on the orbit.

$$\Delta x(s) = heta imes rac{\sqrt{eta(s)}\sqrt{eta(ar{s})}}{2\sin\pi
u}\cos(\phi(s)-\phi(ar{s})-\pi
u) \ heta = rac{\Delta Bl}{B
ho}$$

- To first order a beam offset inside a quadrupole sees a change in quadrupole strength as a dipole kick.
- The change of the tune, beta function and betaton phase are effects of second order and can be neglected.

Derivation of formula for orbit change

• Quadrupole magnetic field is B = kx, thus

 $\Delta B = (k + \Delta k)(x + \Delta x) - kx = \Delta kx + \Delta xk + \mathcal{O}(\Delta k \Delta x)$

• Combine the equations with $\bar{s} = s$ to get

$$\Delta x = \frac{(\Delta kx + \Delta xk)I}{B\rho} \frac{\beta}{2\sin \pi\nu} \cos \pi\nu$$

• and solve for Δx .

$$\Delta x = \Delta kx \frac{\frac{\beta l}{2B\rho \tan \pi \nu}}{1 - \frac{\beta l}{2B\rho \tan \pi \nu}}$$

Derivation of formula for orbit change

• With that calculate ΔB

$$\Delta B = \Delta kx \frac{1}{1 - k \frac{\beta I}{2B\rho \tan \pi \nu}}$$

• and insert that into the equation for θ and $\Delta x(s)$.

$$\Delta X(\boldsymbol{s}) = \left(\frac{\Delta k \cdot x(\bar{\boldsymbol{s}})l}{B\rho}\right) \left(\frac{1}{1 - k\frac{l\beta(\bar{\boldsymbol{s}})}{2B\rho \tan \pi\nu}}\right) \frac{\sqrt{\beta(\boldsymbol{s})}\sqrt{\beta(\bar{\boldsymbol{s}})}}{2\sin \pi\nu} \operatorname{Cos}(\phi(\boldsymbol{s}) - \phi(\bar{\boldsymbol{s}}) - \pi\nu)$$

