Spin Tune Determination at COSY Storage Ring

Dennis Eversmann

III. Physikalisches Institut B, RWTH Aachen University JEDI-Collaboration

Frankfurt, 17th March 2014

Baryon Asymmetry and CP violation

- One precondition for Baryon asymmetry: CP violation
- Standard Model prediction: $\frac{n_B n_{\overline{B}}}{n_{\gamma}} \sim 10^{-18}$
- WMAP and COBE (2012): $\frac{n_B n_{\overline{B}}}{n_v} \sim 10^{-10}$

Electric Dipole Moments (EDMs) of non degenerate particles violate P and T

polar / axial vector

Assuming CPT

→ EDM is probe of CP violation in the early universe

$$\mathcal{H} = -d\frac{\vec{S}}{S} \cdot \vec{E}$$

P: $\mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$
T: $\mathcal{H} = +d\frac{\vec{S}}{S} \cdot \vec{E}$

JEDI

Jülich Electric Dipole moment Investigation

 Feasibility studies of a <u>charged hadron EDM</u> experiment in a <u>storage ring</u> (COSY) and first measurement of a deuteron EDM limit of

 $\sigma_d < 10^{-24} \,\mathrm{e} \cdot \mathrm{cm}$

 Dedicated ring to measure first direct proton EDM limit and improve deuteron limit to

$$\sigma_d < 10^{-29} e \cdot cm$$

Sensitive to SUSY models

COSY

Circumference: 184m Polarized proton and deuteron beam

EDDA Detector

Solenoid

Investigation of the Spin Tune of Deuterons at COSY

Thomas BMT Equation and Spin Tune

The spin precession in electric and magnetic fields affected by an electric dipole moment (EDM)

$$\frac{d\vec{S}}{dt} = \vec{\Omega}_s \times \vec{S} \quad \text{with } \vec{\Omega}_s = \frac{q}{m} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \left(\frac{\vec{\beta} \times \vec{E}}{c}\right) + d\frac{mc}{q\hbar S} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right) \right\}$$

In a pure magnetic ring (COSY) and no **EDM d=0**
$$\frac{d\vec{S}}{dt} = \left(\frac{q\vec{B}}{\gamma m}G\gamma\right) \times \vec{S}$$
$$\frac{d\vec{S}}{dt} = G\gamma\vec{\omega}_{cyc}\times\vec{S}$$

Spin tune: Spin rotations per particle turn in the ring

$$\mathbf{v}_{s} = \frac{\text{spin rotations}}{\text{particle revolutions}} = \frac{\left| \overrightarrow{\Omega}_{s} \right|}{\left| \overrightarrow{\omega}_{cyc} \right|} = \gamma G_{d} \approx -0.1609$$

 $G_{d} \approx -0.143$
 $\gamma \approx 1.126$

Beamtime August/September 2013

- Bunched deuteron beam with $p_D \approx 0.97 \frac{\text{GeV}}{c}$ and $\sim 10^9$ particles per fill
- 3 polarization states (2 vector, 1 tensor)
- Beam is extracted by elastic scattering onto a carbon target
- Two extraction methods:
 1. White noise E-field extraction
 2. Bumped extraction

- Spin is tilted into the horizontal plane by a RF-solenoid
- Polarization loss due to spin decoherence \rightarrow sextupole magnets are used

Signal

Compare counting rates of two opposite detector areas

Horizontal polarization measurement

$$\mathcal{A}(t) = \frac{N_{up}(t) - N_{down}(t)}{N_{up}(t) + N_{down}(t)} \sim \sin(|\mathbf{\Omega}_s|t + \varphi_0)$$

$$\frac{\mathsf{Event Rate for UP Detector}}{\int_{0}^{0} \int_{0}^{0} \int_{0}^$$

spin precession: $\gamma G_d \omega_{cyc} \approx 120 \text{ kHz} \gg 2 - 3 \text{ kHz}$ event rate

\rightarrow no direct fit possible

Horizontal Polarization

$$\boldsymbol{T}_{s} = \frac{2\pi}{\left| \boldsymbol{\vec{\Omega}}_{s} \right|} = \frac{1}{\boldsymbol{v}_{s} f_{rev}}$$

$$\mathcal{A}_{fit}(\varphi_s) = \mathbf{A} \sin(\varphi_s + \varphi_0) + offset$$

$$\mathbf{A}_{fit}(\varphi_s) = \mathbf{A} \sin(\varphi_s + \varphi_0) + offset$$

Horizontal Polarization

Horizontal Polarization

Extraction Methods

Spin tune change

Spin tune jump due to change of sextupoles

$$\Delta v_s \sim 10^{-8}$$

Spin tune jump due to change of quadrupoles

$$\Delta v_s \sim 10^{-6}$$

Conclusion

Extraction Method	Horizontally	Vertically	White noise
Spintune change $\frac{\Delta v_s}{\Delta t}$	$2 \cdot 10^{-9} \frac{1}{s}$	$-0.5 \cdot 10^{-9} \frac{1}{s}$	$-0.1 \cdot 10^{-9} \frac{1}{s}$

PRECISION EXPERIMENT We are sensitive to a spin tune change of 10^{-10}

→ one tool to reach upper EDM limit in the order of $\sigma_d \sim 10^{-24} e \cdot cm$

Thank you!

Questions?

Investigation of the Spin Coherence Time of deuterons at COSY

Spin tune change from cycle to cycle

White noise extraction

The huge jump is due to the change of the quadrupole magnets.

This was done to move the tune away from potential 3rd order spin resonances

Feb13 Beam Time

- > Time distribution of the asymmetry phase
- > The phase distribution of the asymmetry fit describes the spin tune change in one cycle: $\Delta f(t) = \Delta w(t) = \partial \Delta w(t) = 1$

$$\Delta v_{S}(t) = \frac{\Delta F_{S}(t)}{f_{COSY}} = \frac{\Delta W_{S}(t)}{\Theta_{COSY}} = \frac{\partial \Delta \varphi_{S}(t)}{\partial t} \frac{1}{\Theta_{COSY}}$$
Is minimized by hitting right spin tune
Is minimized by hitting right spin tune
arbitrary 2013 run

$$\Delta v_{S}(t) = \frac{1}{\theta_{COSY}} = \frac{\Delta W_{S}(t)}{\theta_{COSY}} = \frac{1}{\theta_{COSY}}$$

$$\frac{1}{\theta_{COSY}} = \frac{1}{\theta_{COSY}} = \frac{1}{\theta_{COSY}}$$

Spin Tune against Sextupole

A one percent change of the MXG sextupole magnets induces a change of the spin tune of $3.5 \cdot 10^{-9} \rightarrow \Delta E = 0.46 \text{ keV}$

Feb13 Beam Time

Spin tune distribution for different runs

Spin tune increases at the beginning of each run to get more stable later

Sep13 Beam Time

EDM Run Sep13 (vertical extraction)

Phase distribution of the asymmetry fit for different spin tunes

Investigation of the Spin Coherence Time of deuterons at COSY

• Up-down asymmetry proportional to horizontal polarization

$$A_{UD} = \frac{D - U}{D + U} = P_x A_y$$

- No real time analysis possible due to event rate $< f_{v_s} = v_s f_{COSY} \approx 120 \, kHz$
- Find period of one spin precession ΔT_{v_s} & sort all events in one $\Delta T_{\overline{v_s}}$ intervall
- Precise measurement of the COSY f_{COSY} and solenoid f_{sol} frequencies
- Possibility to calculate spin tune, when solenoid is on resonance

 $f_{COSY} \approx 750 \, kHz$ $f_{sol} \approx 871 \, kHz$ $v_{s} \approx -0.161 \quad \text{1st harmonic}$ $f_{sol} = (\overset{\checkmark}{k \pm \gamma} G) f_{COSY}$ $\Rightarrow -v_{s} = -\gamma G = \frac{f_{sol}}{f_{COSY}} - 1$

- A_{UD} 2π divided into 9 bins (phase interval of 40 degrees) Absolute angle of the spin precession -0.5 $\Omega_{\rm S tot} = 2 \pi v_{\rm S} N_{\rm turn}$ Relative phase of the spin: • (spin direction) $\Omega_s = \Omega_{s,tot} \mod 2\pi$ Fit function: • A_{UD} $f_{A_{UD}}(\Omega_{S}) = a \sin(\Omega_{S} + \varphi) + b$ 0 15 Free parameters: Amplitude, phase and Offset 0.05
- Total time interval of one asymmetry fit: 3s

 $\Omega_{\rm S}$

Energy of the Particle

- Energy of the beam: $E = \gamma m c^2 = \frac{v_s}{G} m c^2 = 2111.5445 \pm 1.10^{-4} \text{ MeV}$ $m = 1875.612793 \frac{MeV}{c^2}$ $v_s = -0.16097352$
- Momentum of the beam:

$$p = \sqrt{E^2 - m^2} = 969.8952 \pm 4 \cdot 10^{-4} \frac{\text{MeV}}{\text{c}}$$

• Energy shift of the beam during one cycle:

$$\Delta E = \Delta \gamma m c^2 = \frac{\Delta v_s}{G} m c^2 = 1.3 \text{ keV}$$

Sextupole Magnets

Sextupole magnets at high β_x

Magnetic fields:

$$B_{y} = \frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} (x^{2} - y^{2}) \qquad B_{x} = \frac{1}{2} \frac{\partial^{2} B_{y}}{\partial x^{2}} xy$$

