## Simulations of Beam-target Interaction for Prototype EDM Storage Ring

Saad Siddique

**DPG Meeting** 

22.03.2024



### Content:

- Introduction
- Measurement of EDM
- Simulation Results
- Summary



## Introduction:

- Matter-antimatter asymmetry in the Universe.
- Standard Model of Particle Physics fails to explain it.



- According to Sakharov criteria (1967):
  - Baryon number violation
  - No thermic equilibrium
  - Charge and Charge-Parity violation
- One of the candidate is electric dipole moment (EDM) of charged particles.



### EDM Measurement using Storage Ring

### **Basic Principle**

- 1) Inject longitudinally polarized beam in storage ring
- 2) Radial electric field interacting with EDM (torque)

 $\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{S} = (\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}) \times \vec{S}$ 

3) Observe vertical polarization with time

### Spin motion: Thomas-BMT-Equation



#### If $G > 0 \rightarrow$ pure electric ring If $G < 0 \rightarrow$ combination of E-B

### Stage 1

### Stage 2

### Stage 3

#### Precursor experiment at COSY FZ Jülich



- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement's precision

Prototype proton storage ring



- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

Final storage ring



- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

A proposal **PRESTO** has been submitted for grant approval.

### Stage 1

#### Precursor experiment at COSY at FZ Jülicl



- Magnetic storage ring
- Deuterons with p= 970 MeV/c

Advancement towards final storage ring will

- Decrease the systematic errors
- Increase EDM measurement`s precision

### Stage 2

#### Prototype proton storage ring



- Electric magnetic storage ring
- Simultaneous CW and CCW beams
- Operates at 30 MeV and 45 MeV

### Stage 3

Final storage ring



- Pure Electrostatic storage ring
- Proton Magic momentum

(701MeV/c)

A proposal **PRESTO** has been submitted for grant approval.

### Prototype EDM Storage Ring



- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously (*i.e*  $\tau > 1000 \text{ sec}$ )
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

### Prototype EDM Storage Ring



- Frozen spin capability
- Storage of high intensity CW and CCW beams simultaneously (*i.e*  $\tau > 1000 \, sec$ )
- Beam injection with multiple polarization states
- Develop and benchmark simulation tools
- Develop key technologies beam cooling, deflector, beam position monitors, magnetic shielding....
- Perform EDM measurement

## **Beam Losses:**

> Beam losses were estimated by taking major effects only.

Two scenarios were considered

- i. with residual gas only
- ii. with carbon target
- Target causes higher beam losses.

|                                |                                   | - with Target - with       | - with Target - with only Residual Gas |                                            |                            |
|--------------------------------|-----------------------------------|----------------------------|----------------------------------------|--------------------------------------------|----------------------------|
| Lattice Type $eta_{y-max}$ [m] | HI $(s^{-1})$<br>10 <sup>-6</sup> | $SCS(s^{-1})$<br>$10^{-4}$ | $10^{-4}$                              | Total loss<br>rate $(s^{-1})$<br>$10^{-4}$ | Total Beam<br>Lifetime (s) |
| 33                             | 2.17(0.006)                       | 7.12 (0.53)                | 2.34                                   | 9.47(2.87)                                 | 1055 (3480)                |
| 100                            |                                   | <b>25.4</b> (1.91)         | 2.10                                   | 27.5(4.01)                                 | 363(2493)                  |
| 200                            |                                   | 87.9(6.60)                 | 1.99                                   | 90.0(8.59)                                 | 111(1163)                  |
| 300                            |                                   | 193.3(14.5)                | 1.90                                   | <b>195.2</b> (16.4)                        | <b>51</b> (609)            |

HI : Hadronic Interactions , SCS : Single Coulomb Scatterings , IBS : Touschek effect

## **Beam Losses:**

> Beam losses were estimated by taking major effects only.

Two scenarios were considered

- i. with residual gas only
- ii. with carbon target

Target causes higher beam losses.

Therefore, further investigations of beamtarget interactions are needed to study.

|                                |                                   | - with Target - with    | - with Target - with only Residual Gas |                                            |                            |
|--------------------------------|-----------------------------------|-------------------------|----------------------------------------|--------------------------------------------|----------------------------|
| Lattice Type $eta_{y-max}$ [m] | HI $(s^{-1})$<br>10 <sup>-6</sup> | $SCS(s^{-1}) \ 10^{-4}$ | ${f IBS}(s^{-1})\ 10^{-4}$             | Total loss<br>rate $(s^{-1})$<br>$10^{-4}$ | Total Beam<br>Lifetime (s) |
| 33                             | 2.17(0.006)                       | 7.12 (0.53)             | 2.34                                   | 9.47(2.87)                                 | 1055 (3480)                |
| 100                            |                                   | <b>25.4</b> (1.91)      | 2.10                                   | 27.5(4.01)                                 | <b>363</b> (2493)          |
| 200                            |                                   | 87.9(6.60)              | 1.99                                   | 90.0(8.59)                                 | <b>111</b> (1163)          |
| 300                            |                                   | <b>193.3</b> (14.5)     | 1.90                                   | <b>195.2</b> (16.4)                        | <b>51</b> (609)            |

HI: Hadronic Interactions , SCS: Single Coulomb Scatterings , IBS: Touschek effect

Doi : <u>10.18429/JACoW-IPAC2023-TUPM078</u>



## **Beam-target interactions:**

- A portion of beam is scattered with pellet target.
- The scattered beam is directed towards Polarimeter to measure its polarization.
- Position of target is crucial for meaningful scatterings of beam.
- Bending arcs is preferred position to separate primary beam from scattered beam.
- Therefore, target should interact with at bending arc of storage ring.



#### PTR Lattices



## Energy losses: with T=30 MeV with d=50 $\mu$ m

| Maximum energy transferred<br>to electrons of target | • Emax = 0.066 MeV                                                                                                                             |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Average energy loss of beam<br>per target transverse | • $\langle E \rangle = 0.232 \text{ MeV}$<br>• $\left(\frac{\Delta P}{P}\right)_{\langle E \rangle} = 5.5 \times 10^{-3}$ (momentum deviation) |  |  |
| Energy Loss straggling                               | • $E_{str}$ = 38 KeV<br>• $\left(\frac{\Delta P}{P}\right)_{E_{str}}$ = 8.9× 10 <sup>-4</sup> (momentum deviation)                             |  |  |

## Simulation :

Generate particles according to Gaussian distribution

$$\beta_x = 12.46515;$$
  
 $\alpha_x = 0.00321;$   
 $\gamma_x = 0.08022$   
 $D_x = 19.03090$   
 $D_{xp} = 1.1049 * 10^{-7}$ 

$$\frac{dp}{p} = 1 * 10^{-4}$$

$$\in_{x,y} = 1 mm mrac$$

**Beam** 
$$\rightarrow 10^5$$
 particles

$$eta_y = 10.35478$$
  
 $lpha_y = 0.00386$   
 $\gamma_y = 0.09658$ 

Phase Space of Particles at Start of Simulations



## Simulation: Track particles over many turns



### Simulations:

#### Diameter $\rightarrow$ 50µm, Particles $\rightarrow$ 10<sup>5</sup>, Pellets $\rightarrow$ 2



### Simulations:

#### Diameter $\rightarrow$ 40µm, Particles $\rightarrow$ 10<sup>5</sup>, Pellets $\rightarrow$ 2



## <u>Comparison b/w different sizes of Pellet target:</u>

| Diameter<br>(µm) | Hits with 1T | Lost with EB | Survived | %age of<br>Survived |
|------------------|--------------|--------------|----------|---------------------|
| 50               | 411          | 394          | 17       | 4%                  |
| 40               | 275          | 252          | 23       | 8%                  |
| 30               | 148          | 134          | 14       | 9%                  |
| 20               | 50           | 35           | 15       | 30%                 |

### New Position of Pellet Target:

**PTR Lattices** 



### Simulations:

#### Diameter $\rightarrow$ 50µm, Particles $\rightarrow$ 10<sup>5</sup>, Pellets $\rightarrow$ 2

Hit with 1st Target --> 504 Lost due with Electric bend --> 296(59%) Survived Particles--> 208



### Simulations:

#### Diameter $\rightarrow$ 40µm, Particles $\rightarrow$ 10<sup>5</sup>, Pellets $\rightarrow$ 2

Hit with 1st Target --> 326 Lost due with Electric bend --> 175(53%) Survived Particles--> 151

![](_page_21_Figure_3.jpeg)

### **Introducing Second Target:**

Diameter  $\rightarrow$  50µm, Particles  $\rightarrow$  10<sup>5</sup>, Pellets  $\rightarrow$  2

Hit with 1st Target --> 504 Lost due with Electric bend --> 296(59 %) Survived Particles--> 208 Hits with 2nd Target --> 127 ( 25 %)

![](_page_22_Figure_3.jpeg)

## <u>Comparison b/w different sizes of Pellet target:</u>

| Diameter<br>(µm) | Hits with 1T | Lost with EB | Survived | %age of<br>Survived |
|------------------|--------------|--------------|----------|---------------------|
| 50               | 504          | 296          | 208      | 41%                 |
| 40               | 326          | 175          | 151      | 46%                 |
| 30               | 172          | 61           | 111      | 65%                 |
| 20               | 78           | 21           | 57       | 73%                 |

## Summary and Outlook:

- Different positions of target were tried and position of target b/w bending arc is better than other positions.
- Beam tracking with only linear effects was performed.
- Target thickness reduces particle losses with Electric bends and more particles reaches to polarimeter.
- Beam Tracking with non-linear effects as well as other beam loss effects is under progress.
- Bmad software is being used to perform beam tracking along with
  - with Electrostatic bending model
  - customized beam-target interaction routine

# Thank you for your Attention $\odot$

### **Back-up Slides**

![](_page_26_Figure_1.jpeg)

## **Back-up Slides**

![](_page_27_Figure_1.jpeg)