

SEARCH FOR ELECTRIC DIPOLE MOMENTS AT COSY IN JÜLICH

Closed-orbit and spin tracking simulations

19.03.2018 I VERA SCHMIDT on behalf of the JEDI collaboration

Member of the Helmholtz Association

CONTENT

- Motivation
- Electric dipole moments (EDM)
- Quadrupole misalignments
- Invariant spin axis
- Summary & Outlook

ELECTRIC DIPOLE MOMENTS (EDMS)

$$\mathcal{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$
$$\mathcal{P}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$
$$\mathcal{T}: \mathcal{H} = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}$$

- Permanent EDMs of light hadrons are *T*and *P*-violating
 - $\implies \mathcal{CPT} \text{ theorem} \Rightarrow \mathcal{CP} \text{ violation}$
- Measuring EDMs of charged particles in storage rings

EDM		
Classical	$\vec{d} = \sum_{i} q_i \cdot \vec{r}_i$	Water molecule $d \approx 4 \cdot 10^{-9} e \cdot cm$
QM	$\vec{d} = \eta \cdot \frac{q}{2mc}\vec{S}$	Neutron $d < 3 \cdot 10^{-26} e \cdot cm$

EDM MEASUREMENTS IN STORAGE RINGS

EDM experiments

- Different methods possible: E-field, B-field, combined
- Pictured: pure E-field method
- Interaction of EDM \vec{d} and electric field \vec{E}
 - ⇒ *spin rotation*
- Charged particles: Lorentz force
- Storage ring as particle trap

Basic idea:

- Inject particles with $\vec{p} \parallel \vec{S}$
- Apply radial electric field
- For $\vec{d} \neq 0$: spin rotates out of horizontal plane
- Measure: build-up of vertical polarization ($\phi \propto |\vec{d}|$)

COOLER SYNCHROTRON COSY IN JÜLICH

- Polarized protons & deuterons
- Current experiments with deuterons at p = 970 MeV/c
- RF Wien filter for EDM measurement
- Measuring polarization with a polarimeter

Forschungszentrum

Page 6

RESONANT WIEN FILTER METHOD

$$\frac{\mathrm{d}\vec{S}}{\mathrm{d}t} = \left(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM}\right) \times \vec{S} = \left(\frac{q}{m}G\vec{B} + \frac{q\eta}{2m}\vec{\beta}\times\vec{B}\right) \times \vec{S}$$

- Vertical fields
- $\vec{S} \parallel \vec{p}$
- Spin rotates in horizontal plane
- $\vec{d} \neq 0$: vertical spin build-up

JEDI

СН

Forschungszentrum

→ No net EDM effect

Page 7

RESONANT WIEN FILTER METHOD

• RF device used to accumulate the EDM signal:

Radial electric field: $E_x \sim \cos(\omega t + \varphi)$ Vertical magnetic field: $B_y \sim \cos(\omega t + \varphi)$

- Wien filter: Lorentz force vanishes \rightarrow no beam perturbation
- RF frequency tuned to horizontal spin precession ($v_s \approx -0.161$)

JEDI

Forschungszentrum

MISALIGNMENT OF QUADRUPOLES

- Disturbed closed-orbit due to QP misalignment
- Spin sees radial magnetic field
- Radial magnetic fields lead to vertical spin build-up

SPIN MOTION AND QP MISALIGMENTS

SPIN MOTION AND QP MISALIGMENTS

Vertical spin build-up due to EDM and QP misalignments!

INVARIANT SPIN AXIS

- Gaussian distributed QP
 misalignments with μ = 0 mm
 (μ = 0 mrad) and σ = 1 mm (σ = 1 mrad)
- Reference particle with initial coordinates x = y = z = 0

INVARIANT SPIN AXIS

Invariant spin field: $\hat{n}(\vec{z}, \theta + 2\pi) = \hat{n}(\vec{z}, \theta)$

 $R(\vec{z}_i, \theta)\hat{n}(\vec{z}_i, \theta) = \hat{n}(\vec{z}_f, \theta), R:$ one turn spin map

→ Determine **best-fit plane** and find **average spin rotation axis**

INVARIANT SPIN AXIS

300 sets of random QP misalignments

Member of the Helmholtz Association

19 March 2018

Page 14

JÜLICH

Forschungszentrum

JEDI

SUMMARY & OUTLOOK

- EDMs as candidate for physics beyond the Standard Model
- Measure EDM at COSY with RF Wien filter method
- Quadrupol misalignments lead to disturbed closed-orbit and vertical spin build-up
- Time dependent spin rotation axis → averaging over many turns lead to average rotation axis for a fixed set of QP misalignments

- Implementation of measured magnet misalignments at COSY
- Use CW and CCW beams to overcome systematic effects due to misaligned magnets

