Model of statistical errors in the search for the deuteron EDM in the storage ring
Methodology

When put into an electromagnetic field, the particle spin begins to precess according to the T-BMT equation:

\[
\frac{d \vec{S}}{dt} = \vec{\Omega} \times \vec{S}
\]

\[
\vec{\Omega} = -\frac{e}{m} \left(G \vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \vec{\beta} \times \vec{E} + \frac{\eta}{2} \vec{E} + \vec{\beta} \times \vec{B} \right)
\]

By measuring the beam’s polarization, we can determine the frequency

\[
\vec{\Omega}^\pm = \vec{\Omega}_{MDM} \pm \vec{\Omega}_{EDM}
\]

Comparing the CW vs CCW frequencies, determine \(\Omega_{EDM} \)
Detector counting rate

\[\tilde{N}(t) = N_0(t) \left[1 + P \cdot e^{-t/\tau_d} \cdot \sin(\omega t + \phi) \right] + \epsilon_t \]

Number of counts is Poisson distributed, hence

\[\sigma_{\tilde{N}_0}^2 = N_0(t) \]

\[\sigma_{N_0}(t) = \sigma_{\tilde{N}_0}(t) / \sqrt{n_{c/\epsilon}} \]

\[\frac{\sigma_{N_0}(t)}{N_0(t)} \propto \frac{1}{\sqrt{\Delta t/\epsilon}} \cdot \exp \left(\frac{t}{2 \tau_b} \right) \]
Cross section asymmetry

A measure of polarization

Definition:

\[A = \frac{N_L - N_R}{N_L + N_R} \]

Model:

\[A(t) = A(0) \cdot e^{\lambda t} \cdot \sin(\omega t + \phi) \]

\[\sigma_A^2(t) \approx \frac{1}{2N_0(t)} \]

Error:

\[\sigma^2[\hat{\omega}] = \frac{\sigma^2[\varepsilon]}{\sum_i f(t_i) \cdot \sigma_w^2[t]} \]
Limiting factors

- Sample Fisher information can be increased by sampling during rapid change
- Limited by polarimetry sampling rate
- Point Fisher information falls exponentially due to decoherence
- Can't economize the beam too much
Time-spread

\[
\sum f(t_i) = n_{\epsilon/\zeta} \cdot x_{01} \cdot \frac{\exp\left(-\frac{\pi}{\omega \tau_d} n_{\zeta}\right) - 1}{\exp\left(-\frac{\pi}{\omega \tau_d}\right) - 1}
\]

\[
t(z) = \tau_d \cdot \ln\left(\frac{1}{1 - z}\right)
\]
Simulation

• Uniform sampling
• 75% of the beam (7.5 \cdot 10^8 useful scatterings)
• 3% initial counting rate error

• Standard error 7.55 \cdot 10^{-7} rad/sec
• If ω is known down to 10^{-6}, can improve the result by 30%
Thank You