

Investigation of Beam and Spin Dynamics for EDM Measurements at COSY

2014-09-04 | Marcel Rosenthal on behalf of the JEDI Collaboration

Outline

Part 1: Introduction

- > What are Electric Dipole Moments?
- General idea for EDM measurements in storage rings
- > The Cooler Synchrotron COSY, Jülich
- Thomas-BMT-equation

Part 2: Simulations

- Simulation framework
- Measurement principle at COSY, Jülich
- Spin Coherence Time studies
- False signal due to magnet imperfections

CP-Violating permanent EDMs

- Electric Dipole Moments:
 - Charge separation
 - Fundamental property
- Permanent EDMs are P- and T-violating
 CPT-Theorem: CP-Violation
- Known CP-Violation not sufficient to explain Matter-Antimatter-Asymmetry in universe
- Search for new sources of CP-Violation (@-term, BSM) by measuring Electric Dipole Moments of charged hadrons in storage rings

EDM measurements in storage rings

➤ General idea:

- Inject polarised particles with spin pointing towards momentum direction
- > *"Frozen Spin"-*Technique: without EDM spin stays aligned to momentum
- EDM couples to electric bending fields
- Slow buildup of EDM related vertical polarisation

The Cooler Synchrotron COSY

Thomas-BMT-Equation

Equation of spin motion for relativistic particles in electromagnetic fields:

$$\frac{dS}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{e}{\gamma m} \left[G\gamma \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right]$$
$$\vec{\Omega}_{EDM} = \frac{e}{m} \frac{\eta}{2} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\mu} = 2(G+1) \cdot \frac{e}{2m} \vec{S}$$
 Proton 1.792847357
Deuteron -0.142561769

$$\vec{d} = \frac{\eta}{2} \cdot \frac{e}{2mc} \vec{S}$$

$$\frac{d}{10^{-24} e cm} \sim 10^{-9}$$

$$10^{-29} e cm \sim 10^{-14}$$

Thomas-BMT-Equation (pure magnetic) U JÜLICH

Equation of spin motion for relativistic particles in electromagnetic fields:

$$\frac{dS}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$
$$\vec{\Omega}_{MDM} = \frac{e}{\gamma m} \left[G\gamma \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right]$$
$$|\vec{\Omega}_{EDM}| = \frac{e}{m} \frac{\eta}{2} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right] \ll |\vec{\Omega}_{MDM}|$$

- Cooler Synchrotron Jülich is conventional pure magnetic ring:
 - > Spin precesses around vertical guiding field.
 - > Number of spin precessions per revolution (with respect to the momentum vector) is given by the spin tune $v_s = G\gamma$
 - > *"Frozen Spin"-*Technique requires $\vec{\Omega}_{MDM} = 0$
 - Not applicable

> Tilt of $\vec{\Omega}$ in main dipoles due to EDM contribution

$$\frac{dS}{dt} = \vec{S} \times \vec{\Omega}_{MDM} + \vec{S} \times \vec{\Omega}_{EDM}$$

$$\vec{\Omega}_{MDM} = \frac{e}{\gamma m} \left[G\gamma \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right] \qquad \tan \xi = \frac{\eta \beta}{2G}$$

$$\vec{\Omega}_{EDM} = \frac{e}{m} \frac{\eta}{2} \left[\vec{E} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right]$$

- > $\vec{\Omega}_{MDM}$ vertical, $\vec{\Omega}_{EDM}$ radial
- Small tilt of spin precession axis.
- > Vertical oscillation is too small to measure, if $|\vec{\Omega}_{EDM}| \ll |\vec{\Omega}_{MDM}|$

Measurement Principle @ COSY

- > Idea:
 - Radiofrequent field oscillating with spin precession frequency
 - > Pure electric field: coherent betatron oscillations
 - > Minimization using Wien filter configuration
 - > RF-E×B-Dipole

$$\vec{\Omega}_{\text{MDM}} = \frac{e}{\gamma m} \left[\mathbf{G} \gamma \, \vec{B} - \left(\mathbf{G} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E} \times \vec{\beta}}{c} - \frac{G\gamma^2}{\gamma + 1} \, \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right] \qquad \vec{E}$$
$$\vec{\Omega}_{\text{EDM}} = \frac{e}{m} \frac{\eta}{2} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} - \frac{\gamma}{\gamma + 1} \, \vec{\beta} \left(\vec{\beta} \cdot \frac{\vec{E}}{c} \right) \right] = \vec{0}$$

- > Device is EDM transparent, no tilt ξ like in guiding dipoles
 - Slowly oscillating signal

Outline

> Part 1: Introduction

- > What are Electric Dipole Moments?
- General idea for EDM measurements in storage rings
- > The Cooler Synchrotron COSY, Jülich
- > Thomas-BMT-equation

Part 2: Simulations

- Simulation framework
- Measurement principle at COSY, Jülich
- Spin Coherence Time studies
- False signal due to magnet imperfections

Simulation framework

New package on top of COSY Infinity

Measurement Principle @ COSY

- RF-Simulation for ideal ring shows effect
 - > Polarized deuteron, p = 970 MeV/c, RF-E×B-Dipole strength: 0.3 mT

der Helmholtz-Gemeinschaft

Spin Coherence Time

- > Spin precession in ideal magnetic ring around vertical axis:
 - > Spin tune: $v_s = G\gamma$
 - Energy deviations lead to different precession speed

Horizontal polarization vanishes!

- Horizontal Polarization 0.0035 compensation \succ 0.003 no compensation 0.0025 www. 0.002 0.0015 0.001 0.0005 200 400 600 800 1000 turn
 - Buildup limited by Spin Coherence Time
 - Decoherence needs to be minimized

Spin Coherence Time

- > Spin precession in ideal magnetic ring around vertical axis:
 - > Spin tune: $v_s = G\gamma$
 - Energy deviations lead to different precession speed

Consider relative change of revolution time of single particle:

$$\frac{\Delta T}{T_0} = \frac{\Delta L}{L_0} - \frac{\Delta \beta}{\beta_0} - \frac{\Delta L}{L_0} \frac{\Delta \beta}{\beta_0} + \left(\frac{\Delta \beta}{\beta_0}\right)^2$$
 with $T_0 = \frac{L_0}{\beta_0 c}$

No coupling:

$$\sum_{L_0} \frac{\Delta L}{L_0} = \left(\frac{\Delta L}{L_0}\right)_{\chi} + \left(\frac{\Delta L}{L_0}\right)_{\chi} + \left(\frac{\Delta L}{L_0}\right)_{\frac{\Delta p}{p}} \qquad \qquad \sum_{L_0} \left(\frac{\Delta L}{L_0}\right)_{\frac{\Delta p}{p}} = \alpha_0 \cdot \frac{\Delta p}{p} + \alpha_1 \cdot \left(\frac{\Delta p}{p}\right)^2$$

Mitglied der Helmholtz-Gemeinschaft

Spin Coherence Time II

bunched

$$\succ \quad \left\langle \frac{\Delta T}{T_0} \right\rangle = \left(\alpha_0 - \frac{1}{\gamma_0^2} \right) \left\langle \frac{\Delta p}{p} \right\rangle + \left(\alpha_1 + \frac{3}{2} \frac{\beta_0^2}{\gamma_0^2} - \frac{\alpha_0}{\gamma_0^2} + \frac{1}{\gamma_0^4} \right) \left\langle \left(\frac{\Delta p}{p} \right)^2 \right\rangle + \left\langle \left(\frac{\Delta L}{L_0} \right)_{\chi} \right\rangle + \left\langle \left(\frac{\Delta L}{L_0} \right)_{\chi} \right\rangle = 0$$

> Canceling energy deviations $(v_s = G\gamma)$: $\left<\frac{\Delta\gamma}{\gamma_0}\right> = 0$

Three conditions for
$$\left\langle \frac{\Delta \gamma}{\gamma_0} \right\rangle = 0$$
:
$$\epsilon_u = \frac{u_{max}^2}{\beta_u}$$

$$\left\langle \left(\frac{\Delta L}{L_0} \right)_u \right\rangle = -\frac{\pi}{L_0} \cdot \epsilon_u \cdot \xi_u = 0, \quad u \in \{x, y\}$$

$$\xi_u = \frac{\Delta Q_u / Q_u}{\Delta p / p}$$

$$\delta \equiv \left[\alpha_1 + \frac{3}{2\gamma_0^2} \left(\beta_0^2 - \left(\alpha_0 - \frac{1}{\gamma_0^2} \right) \right) \right] = 0$$

> Magnetic sextupoles are an effective tool to maintain these conditions.

EDM Measurements @ COSY

Sextupoles at COSY

Sextupoles at COSY

- ► Linear equation system to minimize ξ_x , ξ_y and Δ at the same time
- > MXL dominates ξ_y change
- ► MXG dominates ∆ change

Misalignments

- Up to now only the ideal ring was considered.
- Misalignments and field errors of dipoles and quadrupoles introduce additional field components.
 - Beam orbit displacement
 - Spin rotations
- COSY main magnets:
 - > 24 dipoles
 - > 56 quadrupoles
- Orbit diagnosis & correction:
 - ~60 beam position monitors
 - ~40 correctors

horizontal vertical No correction 100 position in m Randomized simulated error set **Applied orbit correction**

position in m

False "EDM signal"

200

400

- No EDM, but misalignments. What will happen to the polarization? horizontal 0.004 Horizontal Spin Component 0.003 Horizontal Spin Component 0.003 vertical No EDM: $\eta = 0$ randomized misalignments no orbit correction 100 150 position in m 0.002 Large contribution \succ 0.0015 due to uncorrected misalignments 0.001 EDM: $\eta = 10^{-5}$ Apply corrections to no misalignments 0.0005

2014-09-04

mholtz-Gemeinschaft

600

800

1000

turn

Simulations of Misalignments

- Randomize different sets of misalignments and field errors.
- > Shifts of elements in all three directions with $\sigma = 10^{-4} \ m$
- > Rotations of elements around all three axes with $\sigma = 10^{-4} rad$
- Relative magnetic field error of main dipoles with $\sigma = 10^{-4}$

Simulations of Misalignments

- Randomize different sets of misalignments and field errors.
- > Shifts of elements in all three directions with $\sigma = 10^{-4} m$
- > Rotations of elements around all three axes with $\sigma = 10^{-4} rad$
- Relative magnetic field error of main dipoles with $\sigma = 10^{-4}$

Influence on Spin Tune

- > Non commutative spin rotations change the spin tune $v_s = G\gamma$
- Local orbit corrections partially compensate this effect

Mitglied der Helmholtz-Gemeinschaft

Horizontal Polarization Buildup

> Polarization buildup caused by misalignments is in the order of an EDM: $\eta \sim 10^{-4} \rightarrow d \sim 5.3 \cdot 10^{-19}$ e cm

Summary & Outlook

EDM measurements in storage rings require a long polarization lifetime in vertical direction as well as in the horizontal plane.

• Chromaticies
$$\xi_x$$
, ξ_y and $\Delta \equiv \left[\alpha_1 + \frac{3}{2\gamma_0^2} \left(\beta_0^2 - \left(\alpha_0 - \frac{1}{\gamma_0^2} \right) \right) \right]$ are

crucial parameters for minimization of energy spread inside a bunched beam.

- Large set of measured horizontal depolarization for various sextupole configurations has to be understood using tracking simulations.
- Misalignments create false EDM signal in resonant buildup method. Method of local orbit corrections needs to be studied to minimize this signal, while not compensating the EDM effect itself.

SPARES

2014-09-04

EDM Measurements @ COSY

30

Path-lengthening (horizontal)

Several settings leading to vanishing path-lengthening:

Path-lengthening (horizontal)

Deviations from path-lengthening cancellation:

2014-09-04

Path-lengthening (vertical)

Several settings leading to vanishing path-lengthening:

#	MXS / m^{-3}	MXL / m^{-3}	MXG / m^{-3}
1	0	-0.506 (-0.506)	0.775
2	1	-0.522 (-0.522)	0.497
3	2	-0.538 (-0.538)	0.218
4	3	-0.554 (-0.554)	-0.061
5	4	-0.570 (-0.570)	-0.340

Path-lengthening (longitudinal)

Several settings to fulfill the condition:

$$\left[\alpha_1 + \frac{3}{2\gamma_0^2} \left(\beta_0^2 - \left(\alpha_0 - \frac{1}{\gamma_0^2}\right)\right)\right] = 0$$

New method

RF-Tracking illustration

Bunch approaching RF map

RF-Tracking illustration

> Example with 12 maps:

Particles are tracked though map corresponding to phase

RF-Tracking illustration

> Example with 12 maps:

Bunch passed RF map

Spin Coherence Time III

- SCT studies performed during last beam time:
 - Polarised deuterons @ 970 MeV/c
 - Electron-cooled
 - "Heated" in 1 direction (horizontally or longitudinally)
 - Beam steered on target to measure polarisation over time

The RF-E×B-Dipole

- This Version: Field maps provided by R. Gebel and S. Mey for the existing RF-WienFilter
 - Static field for maximum current / voltage

- Simplification (quasi-static approach):
 - $\succ F(x,s,t) = F(x,s) \cdot \cos(\omega t)$
 - $\succ F(x,s) = F_{max} \cdot f(x) \cdot f(s)$
 - > f(x): Polynomial function
 - > f(s): Enge functions for entrance and exit
- Field change during one pass is included.

mholtz-Gemeinschaft

Mitglied der Hel

0

0

EDM measurements @ COSY

Deuterons:

р	ε	L	E	В	η	Θ
970 MeV/c	10^{-6}	0.6 m	12.2 kV/m	0.09 mT	10 ⁻⁹	10^{-14}
970 MeV/c	10^{-4}	0.6 m	1.2 MV/m	8.9 mT	10 ⁻⁹	10 ⁻¹²

RF Induced Spin Resonances

- Precursor experiment: RF-ExB-resonance to build-up EDM signal
- First studies using an RF-Solenoid to investigate induced spin resonances
- > Resonance condition: $f_{sol} = |K + G\gamma| \cdot f_{rev}$

Theoretical prediction

Simulations of induced resonance

JÜLICH

time in s

Statistical Sensitivity for electric/combined-ring

 $\sigma \approx \frac{\hbar}{\sqrt{NfT\tau_{p}}PEA}$

Ρ	beam polarization	0.8
$ au_{p}$	Spin coherence time/s	1000
Е	Electric field/MV/m	10
Α	Analyzing Power	0.6
Ν	nb. of stored particles/cycle	4×10^7
f	detection efficiency	0.005
Т	running time per year/s	10 ⁷

 $\Rightarrow \sigma \approx 10^{-29} e \cdot cm/year \text{ (for magnetic ring } \approx 10^{-24} e \cdot cm/year\text{)}$ Expected signal \approx 3nrad/s (for $d = 10^{-29} e \cdot cm$) (BNL proposal) 2014-09-04 EDM Measurements @ COSY

Statistical Sensitivity for magnetic ring (COSY)

$$\sigma pprox rac{\hbar}{2} rac{G\gamma^2}{G+1} rac{U}{E \cdot L} rac{1}{\sqrt{NfT au_p} PA}$$

G	anomalous magnetic moment	
γ	relativistic factor	1.13
	p=1GeV/c	
U	circumference of COSY	180 m
$E \cdot L$	integrated electric field	$0.1\cdot 10^6 \; V$
Ν	nb. of stored particles/cycle	2 · 10 ⁹

 $\Rightarrow \sigma \approx 10^{-25} e \cdot cm/year$

Systematics

One major source:

Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if :µB_r ≈ dE_r
- Suppose $d = 10^{-29} e cm$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

(Earth Magnetic field $\approx 5 \cdot 10^{-5} T$)

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Summary & Outlook

- EDM measurements in storage rings
 - Feasibility studies and precursor experiment at COSY/Jülich

- EDM related polarisation build-up using induced spin resonance
 - ▶ RF-ExB-Flipper (→ talk: S.Mey)
- Outlook: systematic studies concerning beam alignment and field quality
- Preservation of polarisation mandatory
 - Sextupole corrections
- Outlook: further investigation of SCT

